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Abstract. Thread-level speculation (TLS) allows potentially dependent threads to 
execute in parallel, and thus, makes it easier for the compiler to extract parallel 
threads in the presence of complex control dependences and ambiguous data de-
pendences. However, the high cost associate with unbalanced loads, failed specu-
lation, and inter-thread value communication makes it impossible to obtain the de-
sired performance unless the speculative threads are carefully chosen. Unfortu-
nately, there has been relatively little work on automatically dividing programs 
into speculative threads.  In this paper, we investigate speculative thread decom-
position of loops in general-purpose applications since loops, with their regular 
structures and significant coverage on execution time, are ideal candidates for ex-
tracting parallel threads.  However, typical general-purpose applications have a 
large number of loops, and it is difficult for the compiler to decide which loops to 
parallelize in order to maximize program performance due to the following rea-
sons: (i) the unpredictability of control dependences and the ambiguity of inter-
thread data dependences makes it difficult for the compiler to estimate the per-
formance of a particular loop and (ii) the complex nesting structures of these loops 
makes it difficult to choose which loops to parallelize and the context sensitivity 
of dynamic loop behavior further exasperates this situation. In this paper, we 
evaluate the effectiveness of various compiler techniques that estimate the per-
formance of parallel loops and study the context sensitivity of each loop. We have 
found, (i) with the aid of profiling information, compiler analyses can achieve a 
reasonably accurate estimation of the effectiveness of parallel execution and (ii) 
different invocations of a loop may behave differently, and exploiting this behav-
ior can help improve the performance.  With judicious choice of loops, we can 
improve the performance of SPEC2000 integer benchmarks by as much as 20%. 

1   Introduction  

Microprocessors that support multiple threads of execution are becoming increas-
ingly common [1-8], however, how we can effectively make use of such processors is 
still unclear. One attractive method to fully utilize such resources is to automatically 
extract parallel threads from existing programs. However, automatic parallelization 
[9-11] for general-purpose applications (e.g., compilers, spreadsheets, games, etc.) is 
difficult due to pointer and indirect references, complex data structures and control 
flow, and input-dependent program behaviors. Thread-Level Speculation (TLS) [12-



28] facilitates the parallelization of such applications by allowing potentially depend-
ent threads to execute in parallel while maintaining the original sequential semantics 
of the programs through runtime checking. Although there are numerous proposals on 
providing the proper hardware [29-33] and compiler [34, 35] support for improving 
the efficiency of TLS; proper compiler support for decomposing sequential programs 
into parallel threads[16, 36, 37] that can deliver the desired performance has not been 
explored with the proper depth. In this paper, we present a detailed investigation on 
how to extract speculative threads from loops. 

Loops are attractive candidates for extracting thread-level parallelism, since pro-
grams spend significant amount of time executing instructions within loops, and the 
regular structures of loops make it relatively easy to determine (i) the beginning and 
the end of a speculative thread (each iteration corresponds to a single thread of execu-
tion) and (ii) data dependences that occur between different iterations of the loop, 
a.k.a., inter-thread data dependences. Thus, it is not surprising that previous re-
searches have focused mostly on exploiting loop-level parallelism[11-16, 19-24, 27-
29, 31-35, 38, 39]. General-purpose applications typically contain a large number of 
potentially nested loops, and thus deciding which loops are best for parallelization is 
not always clear. We found 7800 loops from 11 benchmarks in SPEC2000 integer 
benchmarks, among them, gcc contains around 2600 loops. Such a large number of 
loops calls for a systematic approach to select the set of loops to parallelize in appli-
cations. 

It is difficult for the compiler to determine whether a loop can speedup under TLS 
as the performance of the loop under TLS is determined by (i) the characteristics of 
the underlying hardware, such as thread creation overheard, inter-thread value com-
munication latency and mis-speculation penalty, and (ii) the characteristics of the 
parallelized loops, such as the size of the iterations, the number of time the loops 
iterates and the inter-thread data dependence patterns. While detailed profiling infor-
mation and complex estimations can potentially improve the accuracy of our estima-
tion, it is not clear whether these techniques will lead to an overall better selection of 
loops. 

When loops are nested, we can only parallelize at one loop nest level. We say loop 
B is nested within loop A when loop B is syntactically nested with in loop A or when 
A invokes a procedures that contains loop B. On average, we observe that SPEC2000 
integer benchmarks have a mean nesting depth of 8.  In particular, gcc has a nesting 
depth of 10 and gap has a maximum depth of 12.  Straightforward solutions that al-
ways parallelize the inner-most or the outer-most loops do not always deliver the 
desired performance. A judicious decision must be made to select the proper nest 
level to parallelize. 

Furthermore, different invocations of the same static loop may have different be-
haviors.  For instance, a parallelized loop may speed up relative to sequential execu-
tion in some invocations, while slow down in others. We refer to this behavior as 
context sensitivity. It is not clear whether this phenomenon is common among general 
purpose applications and whether it can lead to better performance when exploited. 

This paper makes the following contributions: by evaluating the impact of three 
different loop performance estimation techniques and studying the context sensitivity 
of more than 7800 loops from 11 SPEC2000 integer benchmarks that we have found 



(i) with the aid of profiling information, compiler analyses can achieve a reasonably 
accurate estimation of the effectiveness of parallel execution and (ii) different invoca-
tions of a loop may behave differently, and exploiting this behavior can help improve 
the performance.  With a judicious choice of selecting loops, we can improve the 
performance of SPEC Integer benchmarks by 20%. 
 

The rest of paper is organized as follows: In Section 2, we describe a loop selec-
tion algorithm that select the optimal set of loops to parallelize if we are able to per-
fectly predict the performance of all loops under TLS and loops are not context sensi-
tive. Since such assumption is not realistic, we discuss and evaluate several realistic 
speedup estimation techniques. We investigate the impact of context sensitivity in 
Section 4. We discuss related work in Section 5 and conclude in Section 6. 

2   Loop Selection Algorithm 

In this section we present a loop selection algorithm that chooses a set of loop to 
parallelize while maximizing overall program performance. The input to this algo-
rithm is the coverage and speedup for each individual loop in a program. The output 
is a set of selected loops.  

2.1   Loop Graph 

For single-level loop selection, the main constraint is that there should be no loop 
nesting relation between any two selected loops. Before we select loops, we first 
construct a Directed Acyclic Graph (DAG) called loop graph to represent nesting 
relation between loops. As shown in Figure 1, each node in the graph is a static loop 
in the original program, and a directed edge represents loop nesting relation between 
two loops. Loops could have direct nesting relation or indirect nesting relation 
through procedure calls. In this example, the edge from main_for1 to main_for2 indi-
cates direct loop nesting, and the edge from main_for2 to foo_for1 indicates indirect 
loop nesting.  

For efficiency, transitive nesting relation from main_for1 to foo_for1 is not repre-
sented in loop graph. We also add a pseudo root node to the graph, and create edges 
from this root node to each node that has no predecessor. 

A recursive call introduces cycle in the call graph that violates the acyclic prop-
erty. Cycles can be broken if we can identify backward edges. A backward edge in 
the loop graph is defined as the same as the one in the Control-Flow Graph (CFG) in 
Figure 1(b). After a backward edge is identified, it is simply deleted. If no backward 
edge is detected, we arbitrarily select an edge and remove it to break the cycle. 

Loop graph, like call graph, can be constructed by using runtime profile or com-
piler static inter-procedure analysis. In this study, it is built upon efficient runtime 
profiling. 



 
Fig. 1. Loop graph example 

2.2   Selection Criterion 

We cannot select two loops that have nesting relations. If both loops have good per-
formance, we have to decide which one to select. We use a criterion called benefit 
that considers speedup and coverage simultaneously. It is defined as follows: 

benefit = coverage × (1 – 1 / speedup) (1) 

The benefit value is used to measure the overall program performance gain if we 
parallelize this loop. The bigger this value is, the more likely we will select this loop. 
It is additive such that we can compute the benefit value for a set of loops by simply 
adding up all benefit values of loops in this set. The speedup for the whole program 
can be computed directly from benefit value as follows: 

program speedup = 1 / (1 – benefit) (2) 

2.3   Loop Selection Problem 

The general loop selection problem is as follows: given a loop graph with benefit 
value attached to each node, find a set of nodes such that the overall benefits are 
maximal and there is no path between any two nodes in the graph. 

If we compute the transitive closure of the loop graph, the selection constraints re-
quires that there is no edge between any two nodes. Now the problem is equivalent to 
the Weighted Maximum Independent Set Problem [40], which is a well-known NP-

main() { 
    for (i = 0; i < 10; i++) { 
        for (j = 0; j < 10; j++) { 
            foo(); 
            goo(); 
        } 
    } 
} 
 
foo() { 
    for (i = 0; i < 10; i++) { 
        goo(); 
    } 
} 
 
goo() { 
    for (i = 0; i < 10; i++) { 
    } 
} 

 
         (a) Source code 

main_for1 

main_for2 

foo_for1 

goo_for1 

(b) Loop graph 



complete problem. A set of nodes is called an independent set if there is no edge 
between any two of them. 

2.4   Loop Selection Algorithms 

Since the general loop selection problem is NP-complete, an exhaustive search algo-
rithm only works for a graph with few nodes. For a graph with hundreds or thousands 
of nodes, which is common for most of benchmarks that we are studying, an efficient 
heuristic has to be used. Since a heuristic-based algorithm only gives sub-optimal 
solution, we should use it wisely. By applying a technique called graph pruning, we 
can find a reasonable approximation efficiently. 

2.4.1   Graph Pruning 

 
Fig. 2. Maintaining nesting relations in graph pruning 

Before applying selection algorithms, we can simplify loop graph by pruning out 
those loops that will not be selected as speculative threads, such as: (i) loops that have 
less than 100 dynamic instructions on average are more appropriate for Instruction-
Level Parallelism (ILP); (ii) loops that have no more than 2 iterations on average are 
more likely to underutilize multiple processor resources; (iii) loops with estimated 
speedup less than 1 could slow down the program execution if parallelized. 

Each time we delete a node from the loop graph, we have to maintain the loop 
nesting relation between the remaining nodes. In Figure 2, after we remove node i, we 
have to create new edges from node j, k to node l, m, n respectively.  

Graph pruning can reduce the size of loop graph by eliminating unsuitable loops. 
Moreover, after we delete some nodes, one single connected graph is split into several 
small disjoint sub-graphs. We can apply different loop selection algorithms to those 
small sub-graphs independently according to their sizes. It is efficient to use exhaus-
tive searching algorithm for small sub-graphs. For larger sub-graphs, heuristic-based 
searching algorithm usually gives reasonable approximation. 

j k 

i 

l m n 

j k 

l m n 

(a) Before node i is deleted (b) After node i is deleted 



2.4.2   Exhaustive Searching Algorithm 
In this simple algorithm, we exhaustively try each independent loop set to find the 
one with maximum benefits. For each computed independent loop set, we maintain a 
vector to record all loops that have nesting relation to any loop within this independ-
ent set, and we call it conflict vector. By using conflict vector, it is easy to find a new 
independent loop to add into current independent set. After a new loop is added, the 
conflict vector is updated as well.  

Exhaustive searching algorithm gives accurate solution for loop selection problem. 
However, its efficiency is the major concern in practice. Graph pruning creates small 
sub-graphs that are suitable for exhaustive searching. It works efficiently for sub-
graphs with less than 50 nodes in our experiments. 

2.4.3   Heuristic-based Searching Algorithm 
Even after graph pruning, some sub-graphs are still very big. For those big sub-
graphs, we use heuristic-based algorithms. We first sort all nodes in a sub-graph ac-
cording to their benefit values. For all nodes that are independent of the selected 
independent set, we pick up the one with maximal benefit value and add it into the 
independent set. Similar to exhaustive searching algorithm, we create a conflict vec-
tor for the selected independent set and update it whenever a new node is added. 

This simple greedy algorithm can select a set of independent loops from a large 
graph in polynomial time. However, it is only gives sub-optimal solution. In our ex-
periments, the size of sub-graph is less than 200 nodes after graph pruning so that the 
inaccuracy introduced by this algorithm is negligible. 

3   Experimental Framework 

We implement loop selection algorithm on ORC compiler [41]. ORC compiler is an 
industrial strength open source compiler based on Pro64 compiler and targeting on 
Intel’s Itanium Processor Family (IPF). We implemented our algorithm primarily in 
Code Generator (CG) phase of ORC. 

For each selected loop, compiler inserts special instruction to mark the beginning 
and end of parallel loops. Fork instruction is inserted at the beginning of loop body. 
We optimize inter-thread value communication in CG using the techniques described 
in [34, 35]. Compiler synchronizes all inter-thread register dependences and memory 
dependences with probability greater than 20%. Both intra-thread control and data 
speculation are used for more aggressive instruction scheduling that increase the 
overlap between threads  

Our execution-driven simulator is build upon Pin [42]. We simulate four single-
issue in-order processors. Each of them has private L1 data cache, write buffer, ad-
dress buffer and communication buffer. Write buffer holds the speculatively modified 
data. Address buffer keeps all memory addresses accessed by speculative loads. 
Communication buffer is for the data communicated between threads. The four proc-
essors share L2 data cache. The configuration of our simulated machine model is 
listed in Table 1. 



3.1   Benchmarks 

We study all the benchmarks from SPEC2000 integer suite with the exception of eon, 
which is written in C++. All simulation results are obtained with the ref input set, and 
all profiling information are obtained with the test input set. The statistics that we 
collect for each benchmark are listed in Table 2. 

Most of benchmarks provide a large set of loops to select. It is extremely difficult 
to do loop selection without an automatic and systematic approach. The average loop 
iteration size is measured by using dynamic instruction count. 

Table 1. Machine configuration. 

Issue Width 1
L1-D Cache 32K, 2-way, 1 cycle
L2-D Cache 2M, 4-way, 10 cycles
Write Buffer 32K, 2-way, 1 cycle
Address Buffer 32K, 2-way, 1 cycle
Communication Buffer 128 entries, 1 cycle
Communication Delay 10 cycles
Thread Spawning Overhead 10 cycles
Thread Squashing Overhead 10 cycles

3.2   Simulation Methodology 

To save the simulation time, we parallelize and simulate each loop once. After that, 
each time a selection technique is applied and a set of loops is selected, we directly 
use the simulation result to calculate the overall program performance. In this way, 
we avoid simulating the same loop multiple times if it is selected by different tech-
niques. 

Since it is impossible to do full simulation for all loops, we use simple sampling 
method in our simulation. For each loop, we select the first 50 invocations for simula-
tion. For each invocation, we simulate the first 50 iterations.  

Table 2. Benchmark statistics. 

Program Number of 
Loops 

Average Loop 
Iteration Size 

Mcf 51 29605
Crafty 420 803553
Twolf 899 12437
Gzip 178 206755
Bzip2 163 109227
Vortex 212 45179
Vpr 401 1500
Parser 532 8820
Gap 1655 53721
Gcc 2619 5394



Perlbmk 729 1350

4   Loop Speedup Estimation 

One of the key factors in our loop selection algorithm is being able to accurately 
predict the performance of parallel execution of all loops through static analyses. Our 
goal is to maximize the overall program performance represented as the benefit value 
of the selected parallel loops. The efficiency of a parallel loop is determined by both 
the coverage and speedup of this loop. In other words, given two completely nested 
loops, if we can only parallelize one of them, we will always choose to parallelize the 
loop with a larger benefit value.  

In order to calculate the benefit value for each loop, we have to estimate both cov-
erage and speedup of each loop. Coverage can be estimated using runtime profile. For 
speedup estimation, we have to estimate both sequential and parallel execution time.  

We assume that each processor executes one instruction per cycle, i.e., each in-
struction takes one cycle to finish. It is relatively easy to estimate sequential execu-
tion time Tseq of a loop. We can determine the average size of a thread (average num-
ber of instructions executed per iteration) and the average number of parallel threads 
(the number of time a loop iterates) by using profile. Tseq can be approximated using 
equation (3), where S is the average thread size and N is the average number of 
threads. 

 
Fig. 3 Impact of delay D assuming 4 processors 

Tseq = S × N (3) 

On the other hand, the performance of parallel execution is determined by more 
factors, including the number of processors, the thread creation overhead, the cost of 
inter-thread value communication and the cost of mis-speculation. We divide the total 
parallel execution time Tpar into two parts: perfect execution time Tperfect and mis-
speculation time Tmisspec. Tperfect is the parallel execution time assuming that there is no 
mis-speculation. Tmisspec is the wasted execution time due to mis-speculation. 
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Tpar = Tperfect + Tmisspec (4) 

We also define delay D as the delay between two consecutive threads caused by 
inter-thread value communication Tcomm and thread creation overhead O. 

D = max(Tcomm, O) (5) 

Depending on the delay D, we use different equations to estimate Tperfect. If D ≤ S / 
p, we can have perfect pipelined execution of threads as shown in Figure 3(a), and 
use equation (6) for estimation.  

Tperfect = ((N – 1) / p + 1) × S + ((N – 1) mod p) × D (6) 

If D > S / p, there are bubbles in pipelined execution of threads and the delay D 
has much high impact on the overall execution time as shown in Figure 3(b). We use 
equation (7) for estimation.  

Tperfect = (N – 1) × D + S (7) 

The key to accurately predict speedup is how to estimate Tcomm and Tmisspec. Tcomm is 
caused by the synchronization of frequently occurring data dependences, while Tmis-

spec is caused by mis-speculation of unlikely occurring data dependences. We will 
describe how we estimate Tmisspec first, and then three Tcomm estimation techniques in 
the following sections. 

4.1 Tmisspec Estimation 

When a mis-speculation is detected, the violating thread will be squashed and all 
work that have been done by this thread become useless. We use the amount of work 
thrown away in a mis-speculation to quantify the impact of this mis-speculation on 
the overall parallel execution. Depending on when a mis-speculation is detected, the 
amount of wasted work could be different. For instance, if a thread starts at cycle c1, 
and mis-speculation is detected at cycle c2, we have (c2 – c1) wasted cycles. In our 
machine model, a mis-speculation is detected at the end of previous thread. So that 
we could waste (S – D) cycles for one mis-speculation. The overall execution time 
wasted due to mis-speculation is calculated in equation (8), where Pmisspec is the prob-
ability that a thread will violate inter-thread dependences. This probability can be 
obtained through runtime profile.  

Tmisspec = (S – D) × Pmisspec (8) 

4.2   Tcomm Estimation I 

One way to estimate the amount of time the parallel threads spent on value communi-
cation is to identify all the instructions that are either the producers or the consumers 
of some inter-thread data dependences and estimate the cost of value communication 
as the total cost of executing all such instructions. Although this estimation is simple, 



it assumes that the value required by a consumer instruction is immediately available 
when it is needed. Unfortunately, this assumption is not always realistic, since it is 
often the case that the instruction that consumes the value is issued earlier than the 
instruction that produces the value, as shown in Figure 4(a).  Thus, consumer thread 
has to stall and wait until the producer thread is able to forward it the correct value, as 
shown in Figure 4(b). The flow of the value between the two threads serializes the 
parallel execution, and so we refer to it as a critical forwarding path. In some cases, 
the critical forwarding path can become the dominating factor in parallel execution.  

4.3   Tcomm Estimation II 

To take into consideration the impact of the critical forwarding path, we propose 
estimation technique II. Assuming load1, the consumer instruction in T2 is executed 
at cycle c2 and store1, the producer instruction in T1 is executed at cycle c1, the cost 
of value communication between these two instructions is estimated as (c1 – c2).   

If the data dependence does not occur between two consecutive threads, rather it 
has a dependence distance of d, the impact on the execution time of a particular 
thread should be averaged out over the dependence distance. Thus, the impact of 
communicating a value between two threads is estimated as: 

criticalness = (c1 – c2) / d (9) 

 

 
Fig. 4. The data dependence patterns between two speculative threads 

 
There is one more mission piece for this estimation technique to be successful that 

is how to determine which cycle a particular instruction should be executed.  Since it 
is not possible to perfectly predict the dynamic execution of a thread, we made a 
simplification assuming each instruction will take one cycle to execute, thus the start 
cycle is simply an instruction count of the total number of instructions between the 
beginning the thread and the instruction in question. However, due to complex con-
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trol flows that are inherit to general-purpose applications, there can be multiple exe-
cution paths, each with different path length, that reach the same instruction. Thus, 
the start time of a particular instruction is the average path length weighted path taken 
probability, as shown in equation (10).  

c = Σ P∈all_paths(length(p) × prob(p)) (10) 

 
For many loops, there are multiple data dependences exist between two speculative 

threads, as shown in Figure 4(c).  In such cases, the cost of value communication is 
determined by the most costly one, since the cost of the other synchronization can be 
complicated hidden.   

Previous work has shown that the compiler can effective reduce the cost of syn-
chronization through instruction scheduling and such optimizations are particularly 
useful for improving the efficiency of communicating register-resident scalars[34, 
35].  Unfortunately, the estimation technique described in this section does not take 
such optimization into consideration, and it tends to be over estimate the cost of inter-
thread value communication. 

4.4   Tcomm Estimation III 

With Tcomm estimation I underestimates the cost of value communication and estima-
tion II overestimates the cost of value communication, it is desirable to find an esti-
mation technique that considers both the critical forwarding path and the impact of 
instruction scheduling the reduce the critical forward path length. Thus, we have the 
third technique, in which the start time of an instruction based on data dependence 
graph. When there are multiple paths, in the data dependence graph, that can reach an 
instruction, we use length(pi) to represent the average length of path pi. Average start 
time of this instruction can be measured as follows: 

t = max(length(pi)) (11) 

4.5   Evaluation 

All three speedup techniques described above have been implemented in our loop 
selection algorithm to estimate Tcomm. Three different sets of loops are selected, re-
spectively. The impact of parallelizing each set of loops on the overall program per-
formance is illustrated in Figure 5.  For comparison, we also select loops using 
speedup value calculated from simulation results, and use this perfect estimation as 
the upper bound for different estimations techniques.  

We have observed: (i) for estimation I, the performance improvement obtained by 
most benchmarks are closed to the performance improvement obtained through simu-
lation. However, for gzip, the loops selected using this optimistic estimation is com-
pletely wrong and results in a 40% performance degradation; (ii) the set of loops 
selected using estimation II is only able to achieve a fraction of the performance ob-
tained by the set of loops selected using simulation results. This pessimistic estima-



tion technique tends to be conservative in selecting loops; (iii) the set of loops se-
lected with estimation III always performs at least as well as the better set of loops 
selected using estimation I and estimation II.  

Figure 6 illustrate the coverage of parallel execution on the total execution time.  
We have found that although the set of loops selected using simulation results dem-
onstrated the most performance improvement, it does not always correspond to the 
large coverage. In mcf, although set of loops selected using estimation III has 
simulation performance as the set of loops selected using simulation results, the 
coverage of the simulation set is significantly smaller. This phenomenon suggests 
that, our estimation method may not be very accurate, but it is useful in helping use 
judiciously select a set of loops that have performance potential. 
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 Fig. 5. Performance comparison 
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5   The Impact of Dynamic Loop Behavior on Loop Selection 

Once a loop is selected by our current loop selection algorithm, every invocation of 
this loop is parallelized. The underlying assumption is that the parallel execution of a 
loop behaves the same across different invocations. However, some loops exhibit 
different behaviors when they are invoked multiple times. Different invocations of a 
loop may differ in the number times the loop iterates, the number of instructions exe-
cuted per iteration and the data dependence patterns, and thus, demonstrate different 
parallel execution efficiency. Consequently, it might be desirable to only parallelize 
certain invocations of a loop. In this section, we concentrate on this phenomenon. In 
particular, we study whether exploiting such behavior can help us select a better set of 
loops and improve the overall program performance.  

5.1   Calling Context of a Loop 

In the loop graph, as described in Section 2, we refer the path from the root node to a 
particular loop node as the calling context of that loop node. It is possible for a par-
ticular loop node to have several distinct calling contexts and it is also possible for 
loops with different calling context to behave differently.  To study this behavior, we 
replicate the loop nodes for each distinct calling context. An example is shown in 
Figure 7, where the loop node goo_for1 has two distinct calling contexts, thus it is 
replicated into goo_for1_A and goo_for1_B. After the replication, the loop graph 
described in Section 2 is converted into a tree, and we refer to it as the loop tree. 
Figure 7 shows the loop tree derived from the example shown in Figure 1.  

 
Fig. 7: Loop tree example 

We perform loop selection under this context assuming different loop nodes corre-
spond to completely different loops. Thus, a loop is parallelized under a certain call-
ing context if the parallel execution speeds up under that calling context. Loop selec-
tion on the loop tree is relatively straightforward. The algorithm is as follows. We 
first traverse the loop tree bottom-up. For each node in the tree, we evaluate how 

main_for1 

main_for2 

foo_for1 

goo_for1_A goo_for1_B 



much execution time we can save if this particular loop is parallelized, and we refer to 
this number as Bcurrent. We sum up the execution time we can save if we parallelize its 
descendants, we refer to this number as Bsubtree. We record the larger of these two 
numbers as Bperfect for this loop node. If Bperfect equals to Bcurrent, we mark this node as 
a potential candidate for parallelization. When we sum up the execution time saved if 
parallelizing the children of a loop node, we use Bperfect. We then traverse the loop 
tree top-down. Once we have encountered a loop node that is marked as a potential 
candidate for parallelization from previous step, we prune its children.  The leaf 
nodes of the remaining loop tree correspond to loops that should be parallelized. The 
accurate solution can be found in polynomial time for a loop tree. 

5.2   Dynamic Behavior of a Loop 

It is possible for two different invocations of a loop to behave different even if they 
have the same calling context. To further study this behavior, we assume an oracle 
that can perfectly predict whether a particular invocation of a loop speeds up or not 
and only parallelize this invocation. A different set of loops are selected and evalu-
ated assuming when such oracle is in place. 

5.3   Evaluation 

In this section, we evaluate the impact of considering the calling context of a loop as 
described in Section 5.1 and the impact of only parallelizing selected invocations of a 
loop as described in Section 5.2.  The impact of such behavior on overall program 
performance is shown in Figure 8. We have observed that by differentiating loops 
with different calling contexts, some benchmarks are able to obtain better program 
performance. Among them crafty has an additional speed up of 2% and perlbmk 
speeds up by 7%. The performance of mcf, crafty and bzip2 improves by an addi-
tional 2% by having an oracle that only parallelize invocations of loops that speed up. 
Thus, we found that the dynamic behavior of a loop is sensitive to its calling context. 
We also believe that a dynamic or static loop selection strategy that can predict 
whether a particular invocation of a loop speeds up or not can help us achieve addi-
tional program performance.  

Figure 9 shows the coverage for the selected loops. For some benchmarks, such as 
perlbmk, we observe that the overall program performance improves although the 
coverage of parallelized loops decreases when we take context information into con-
sideration. Close examination reveals that, perlbmk contains a loop that only speeds 
up under certain circumstances, and by only parallelizing such invocations, we can 
achieve better performance. For some other benchmarks, such as crafty and vortex, 
the coverage of parallel loops increased due to the selection of a different set of loops. 
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Fig. 8. Performance comparison 
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Fig. 9. Coverage comparison 

6   Related Work 

Colohan et al. [16] empirically studies the impact of thread size on the perform-
ance of loops. They employ different techniques to unroll loops in order to determine 
the best thread size per loop. Our estimation techniques can be employed to determine 
the candidate loops to unroll. They also propose a runtime system to measure the 
performance and select each loop dynamically. Due to the runtime overhead, the 
system can only select loops locally without considering loop nesting. 

Oplinger et al. [24] proposes and evaluates a static loop selection algorithm using 
simulation. In their algorithm, they select the best loops in each level of dynamic loop 
nest as possible candidates to be parallelized and  then compute the frequency with 



which each loop is selected as best loop. Finally, they select the parallelized loops 
based on the computed frequencies. The concept of dynamic loop nest is similar to 
the loop tree proposed in our study. However, this technique is only used to guide the 
heuristic in context-insensitive loop selection. Their performance estimation is ob-
tained directly from simulation, and does not consider the effect of compiler optimi-
zation. 

Chen et al. [43] proposes a dynamic loop selection framework for Java program. 
They use hardware to extract useful information, such as dependence timing, and 
speculative state requirements and then estimate the speedup for a loop. Their tech-
nique is similar to the runtime system proposed by Colohan et. al. [16] and can only 
select loops within a simple loop nested program. Considering the global loop nesting 
relations and selecting the loops globally introduces significant overhead for the run-
time system. 

Johnson et al. [37] studies thread selection from consecutive basic blocks consider-
ing important factors such as thread predictability, data dependence and load imbal-
ance. These threads are fine-grained and usually do not contain procedure calls or 
inner loops and complement threads based on loops.  

Marcuello et al. [21] proposes a thread spawning scheme that supports spawning 
threads from any point in the program. They use profile to identify appropriate thread 
spawning points with more emphasis on thread predictability. 

7   Conclusions 

Loops, with their regular structures and significant coverage on execution time, are 
ideal candidates for extracting parallel threads. However, typical general-purpose 
applications contain a large of nested loops with complex control flow and ambigu-
ous data dependences. Without an effective loop selection algorithm, determining 
which loops to parallelize can be a daunting task. In this paper, we proposed a loop 
selection algorithm that takes the coverage of all loops and speedup achieved by par-
allelizing of these loop as inputs, then output the set of loops that should be parallel-
ized to maximize program performance. One of the key components of this algorithm 
is the ability to accurately estimate the speedup that can be achieved when a particular 
loop is parallelized. This paper evaluates three different estimation techniques and 
found that with the aid of profiling information, compiler analyses are able to come 
up with reasonably accurate estimate that allows our loop selection algorithm to select 
a set of loops to achieve good overall program performance. Furthermore, we have 
observed that some loops behave differently across different invocations. We study 
this phenomenon, and found that by exploiting this behavior and only parallelized 
invocations of a loop that actually speedup, we can potentially improve overall pro-
gram performance even further for some benchmarks. 
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