IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

709

A High-Bandwidth Memory Pipeline for
Wide Issue Processors

Sangyeun Cho, Student Member, IEEE, Pen-Chung Yew, Fellow, IEEE, and
Gyungho Lee, Senior Member, IEEE

Abstract—Providing adequate data bandwidth is extremely important for a future wide-issue processor to achieve its full performance
potential. Adding a large number of ports to a data cache, however, becomes increasingly inefficient and can add to the hardware
complexity significantly. This paper takes an alternative or complementary approach for providing more data bandwidth, called data
decoupling. This paper especially studies an interesting, yet less explored, behavior of memory access instructions, called access
region locality, which is concerned with each static memory instruction and its range of access locations at runtime. Our experimental
study using a set of SPEC95 benchmark programs shows that most memory access instructions reference a single region at runtime.
Also shown is that it is possible to accurately predict the access region of a memory instruction at runtime by scrutinizing the
addressing mode of the instruction and the past access history of it. We describe and evaluate a wide-issue superscalar processor with
two distinct sets of memory pipelines and caches, driven by the access region predictor. Experimental results indicate that the
proposed mechanism is very effective in providing high memory bandwidth to the processor, resulting in comparable or better
performance than a conventional memory design with a heavily multiported data cache that can lead to much higher hardware

complexity.

Index Terms—Data bandwidth, data locality, instruction level parallelism, runtime stack, data stream partitioning, multiported data

cache.

INTRODUCTION

1
TECHNOLOGICAL and architectural innovations have en-
abled development of powerful microprocessors that
can execute several instructions concurrently at a very high
clock rate [11], [36], [12]. These processors select and
execute independent instructions at runtime, assisted by
hardware mechanisms for control speculation, register
renaming, and data-flow execution [15]. With ample on-
chip hardware resources that will become available within a
few years, researchers are actively proposing even more
aggressive microarchitectures that can issue up to 16 or
more instructions in a single cycle [17], [24], [27]. To
increase the exploitable instruction level parallelism (ILP) by
better utilizing the available hardware parallelism, various
techniques to speculate on control [19], [37], data values
[18], [29], and data dependences [20], [6] are being pursued.
In a future wide-issue processor with aggressive control
and data speculation techniques, efficient handling of
memory references will become a more critical factor that
affects the overall performance. Cache memories have been
used in virtually all recent microprocessors to shorten the
average memory access latency. Temporal and spatial
localities are two important operating principles for various

e S. Cho is with the Media IP Group, Samsung Electronics Co., Yong-In
City, Kyoung-Ki, Korea. E-mail: sangyeun.cho@acm.org.

e P.-C. Yew is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.

o G. Lee is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011.

Manuscript received 19 Jan. 2000; revised 15 Sept. 2000; accepted 26 Feb.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111241.

<+

cache memories. In addition to the memory latency
problem caused by the processor-memory speed gap,
cache’s ability to provide enough memory bandwidth (or
cache ports) is extremely important for a future wide-issue
processor to achieve its full performance potential [31], [16],
[25], [4]. For example, for a processor to sustain 10 instruc-
tions per cycle (IPC), the memory subsystem should
provide a minimum bandwidth of four references per
cycle, or more, to prevent excessive queuing delays,
assuming that about 40 percent of all instructions are loads
and stores [17].

1.1 Multiported Data Caches

A straightforward approach for increasing memory band-
width is to implement a multiported data cache [31]. There
are a number of techniques to provide multiple cache ports:
ideal multiporting, time-division multiplexing, replicating
the cache, and interleaving. Except for the very expensive
ideal multiporting,' these techniques have been incorpo-
rated in recent superscalar processors to implement dual
ports. For example, Alpha 21264 provides a two-ported data
cache by doubling the cache access rate compared with the
normal processor clock [12]. Alpha 21164, the predecessor
of the 21264, uses a replicated data cache [8] and the MIPS
R10000 implements a two-way interleaved data cache [36].

Each design, however, is either costly to implement,
and/or can have significant drawbacks. The time-division
multiplexing does not scale beyond a certain number of

1. Reportedly, dual-ported synchronous SRAMs are up to around
50 percent slower, nearly 150 percent larger, and/or consume over
120 percent more power, compared with the equivalent 8-KB or 16-KB
single-ported synchronous SRAMs, all in a similar 0.18um technology [14],
[22], [28].

0018-9340/01/$10.00 © 2001 IEEE

710

ports (seemingly two). The replication approach broadcasts
a store to each copied cache for data coherence, effectively
limiting the data bandwidth on stores. It also requires
significantly more silicon area than other techniques. The
interleaving technique suffers from bank conflicts [16], [25].
The cost and delay of the crossbar between reservation
stations and load/store units can become prohibitively
large, especially when a wider instruction window and
many cache ports are to be employed. Moreover, it does not
generally allow a scaling factor that is not a power of two,
e.g., five or six; this can become a severe restriction to a
balanced, cost-effective system design.

1.2 Data Decoupling

To tackle the memory bandwidth problem, this paper
studies a processor pipeline and memory system design
called data-decoupled architecture [4], [5]. The data-decoupled
architecture divides the data memory stream into two or
more independent streams before their actual addresses are
known by using a prediction mechanism or static informa-
tion from compilers. Partitioned memory accesses are then
fed into multiple, independent pipelines. This allows the
use of multiple independent caches with fewer ports, each
of which is associated with a dedicated pool of reservation
stations. Fig. 7 shows an example data-decoupled processor
pipeline with two caches.

The data-decoupled approach to the memory system
design can have two crucial advantages over a conventional
design when used in a wide-issue processor. First, the cost
and complexity of building a large cache with many ports is
reduced. Implementing a reasonably sized data cache with
more than two ports becomes increasingly inefficient. That
is, such a cache may occupy significantly more chip area
and/or can have longer access latency [25], [4]. More
importantly, the network and the control logic for orches-
trating memory accesses between a large number of
reservation stations and cache ports become simpler. Such
reduction in hardware complexity can lead to a shorter
clock cycle time [23]. Second, partitioning memory refer-
ences can facilitate more specialized handling of each
partitioned group of memory references. Fast forwarding,
described in Section 4, is one such technique.

This paper explores a very useful behavior of memory
reference instructions for high-bandwidth processor mem-
ory system design, called access region locality, and how it is
utilized to construct a data-decoupled memory system for a
wide-issue processor. The access region locality states that a
memory reference instruction typically accesses a single
region2 at runtime and (thus) the region it accesses is highly
predictable. An important implication of the access region
locality is that any two memory references known to access
nonoverlapping regions are data independent. Fig. 1
presents a small code section to illustrate the access region
of memory reference instructions.

Four (static) memory references of interest are high-
lighted: b[i] in line 8, c[i] in line 9, *parm1 in line 10, and a in
line 13. When the function foo () is called, b[i] accesses the

2. An access region R is defined as (L, U), where L is the lower bound on
the address of the accessed locations of a memory reference instruction at
runtime and U is the upper bound. Program’s data, heap, and stack
segments are regions, for instance.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

int c[LIMIT];

1

2

3 void foo (int *parm1)
4 {

5 inti, a,*b;
6 b = malloc (LIMIT * sizeof(int));

7 for(i=0; i< LIMIT; i++) {

8 b[i] = ...; // heap region

9 .. =c][i] // data region
10 + *parm1; // unknown
1 3}

12 bar (&a);
13 printf ("%d", a);
14 }

// stack region

Fig. 1. An example code segment that shows memory references to
different regions.

heap region and c[i] accesses the data region, determined by
where b[] and c[] are allocated (see lines 6 and 1). The access
region of *parm1 is unknown from the given code segment.
It can access any region at runtime, depending on the
address passed from the call site of the foo () function. Since
a is a local variable whose address is taken (in line 12), the
reference to a becomes a stack access.

We show in Section 3 that memory reference instructions
which can access more than one region, such as *parm1, are
few and their access regions are accurately predictable at
runtime using a simple predictor similar to the ones used
for branch prediction. Even without the program’s high-
level information, i.e., given only the binary code, a simple
one-bit predictor can classify the memory references into
stack and nonstack references with an accuracy of well over
99 percent on average.

1.3 Paper Organization

The rest of this paper is organized as follows: Section 2
summarizes previous related work. Section 3 studies the
access region locality using some experimental data and
develops a prediction mechanism. Section 4 discusses the
data-decoupled architecture and gives an implementation
that exploits the access region locality. Evaluation results
based on simulation then follow. Finally, conclusions are
summarized in Section 5.

2 RELATED WORK

Recent uncovering of useful behaviors of memory access
instructions has facilitated development of very interest-
ing and effective processor memory systems. First of all,
Lipasti et al. showed that the values transferred from
memory by load instructions present locality and are
predictable [18]. They further devised and evaluated
confidence, prediction, and verification mechanisms to
utilize this load wvalue locality in wide-issue pipelined
processors. Under their scheme, predicted load values are
provided to the consuming instructions after being
filtered by a confidence mechanism, which then are
executed speculatively on the predicted values. When it is
known at a later time that the previous prediction was
wrong (by the verification mechanism), those executed

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS 711

instructions that depend on the mispredicted value are
squashed and reexecuted on the correct value. They
reported measurable (3-6 percent on average, depending
on the machine model) and, in some cases, dramatic (up to
around 20 percent) speedups achievable by the load value
prediction mechanism on realistic processor models. The
potential of more advanced context-based predictors was
investigated by Sazeides and Smith [29].

Second, it has been shown that the actual address of
many memory instructions is highly predictable.
Eickemeyer and Vassiliadis [9] proposed a stride-based
predictor to speculate on the address of a load instruction,
in order to hide the memory latency. Austin and Sohi [2]
also proposed and studied address prediction schemes
using operand-based predictors. These techniques have the
potential to improve the dispatch-to-issue latency of load
instructions and overall performance.

Last, dependences between store and load instructions
are shown to be predictable. In the most conservative form
of static dependence prediction, load instructions queued
after a store instruction whose address is not known are all
considered dependent on the store. In an optimistic ap-
proach, a load instruction whose address does not match
the address of any store before it (including “unknown”
store addresses) in the queue is considered independent [13],
[12]. Moshovos et al. [20] and Chrysos and Emer [6] showed
that the actual dependences between store and load
instructions are accurately identifiable at runtime. This
memory dependence predictability can be utilized to reduce
the misprediction penalty of the optimistic static prediction
described above or to bypass the store data early to the
dependent load(s) to shorten the store-to-load latency [21],
[34]. The above three types of locality/predictability are,
like the access region locality studied in this paper, based on
per-instruction runtime information. We expect more
studies on per-instruction memory access behaviors to
come and cooperate with other types of locality, including
traditional temporal and spatial localities, to build more
effective and efficient memory systems.

Designing an effective multiported data cache has been a
topic of active research as aggressive multiple-issue
processors emerge. Sohi and Franklin [31] first predicted
that the L1 cache bandwidth will eventually become a
performance bottleneck for a wide-issue processor and
proposed a nonblocking, multiported data cache design
with interleaved banks as a solution. Wilson et al. [35]
argued that adding more ports to the L1 cache can become
costly and/or inefficient in terms of space and time. As an
alternative to a dual-ported cache design found in some
recent microprocessors, they proposed augmenting a small
line buffer to a single-ported data cache to effectively
increase the port efficiency. Rivers et al. [25] also studied
the impact of using a line buffer per bank in a wide,
interleaved cache. These studies have focused on increasing
the efficiency of cache ports by adding a small buffer or
understanding trade-offs of various multiporting strategies
in terms of cost and performance under specific processor
models. The data-decoupled architecture is largely ortho-
gonal to multiported data cache design techniques. Rather,

it tries to put together a number of caches to build a high-
bandwidth memory system.

A more recent work worth mentioning is Yoaz et al. [38],
which proposed cache bank prediction. The technique
increases the cache port utilization through balanced
scheduling of load instructions toward multiple cache
banks. This technique also enables slicing the memory
pipeline and eliminating the crossbar laid between cache
banks and memory issue slots. We view the technique as a
possible form of data decoupling more generally defined in
this paper, where the partitioning criteria is the modulo
cache line address of each memory access. This paper
studies a type of memory access locality based on program
semantics, which then leads to a simple, yet very accurate
prediction mechanism for data decoupling.

3 AccEeEss REGION LOCALITY

A program’s memory space is divided into a few regions or
segments: data, heap, and stack regions under a typical
runtime system [1]2 We study in this section how each
memory reference instruction accesses memory regions
using a profiling tool and a set of benchmark programs. We
first study how each static memory instruction accesses
regions at runtime. Then, we develop and evaluate a
runtime prediction mechanism. This section will serve as a
basis for the discussions in Section 4.

3.1 Methodology

We use a memory reference profiler derived from the
Simplescalar tool set [3] for the results reported in this
section. In each simulated cycle, it fetches and executes one
instruction as specified in the program. While doing so, it
collects desired information, i.e., which region(s) a memory
reference instruction accesses. We use eight integer and four
floating-point (FP) programs from the SPEC95 benchmark
suite [32], whose characteristics are summarized in Table 1.
101.tomcatv, 102.swim, 103.su2cor, and 107.mgrid are FP
programs. All the programs were compiled using a version
of gce (EGCS V1.1b) at the -O3 optimization level with loop
unrolling. Either train or test input is used in most cases,
with some data set modification to control the simulation
time. In all the experiments of this study, only user-level
instructions are simulated. Operating system codes, such as
system calls, are implemented within the simulator itself
and they do not generate actual instructions to be
simulated.

3.2 Per-Reference Memory Access Behavior

3.2.1 Access Regions and Access Region Locality

We analyze what region(s) each memory instruction
accesses in a program execution. Depending on the
accessed region(s), instructions are classified into seven
different classes, as shown in Fig. 2. It is observed that
majority of memory instructions, labeled “D” (accessing
data region only), “H” (accessing heap region only), and
“S” (accessing stack region only) classes, reference a single

3. Program’s text region is yet another memory region. Accesses to the
text region are directed to a separate instruction cache in many recent
processors.

712

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

TABLE 1
Input, Dynamic Instruction Count, and Percentage of Dynamic Load and Store Instructions in Each Benchmark Program

| Benchmark H Input | Inst. count || Loads | Stores |
099.g0 train 541M 22% 8%
124.m88ksim rel 250M 14% 8%
126.gcc stmt-protoize.i 220M 22% 14%
129.compress train (100K) 293M 21% 13%
130.1i ctak.lsp 434M 28% 19%
132.ijpeg penguin.ppm 621M 19% 9%
134.perl scrabbl.pl 525M 26% 15%
147.vortex train (1 iter.) 284M 29% 22%
101.tomcatv || test (N = 253, 1 iter.) 549M 21% 12%
102.swim test (3 iter.) 473M 22% 8%
103.su2cor test 676M 23% 10%
107.mgrid train (1 iter.) 684M 32% 6%

Percentage of load or store instructions is relative to the total instruction count.

region at runtime. Only an average of 1.8 percent and
1.9 percent of all the static instructions access more than one
region in the integer and floating-point programs studied,
respectively. Although varied from one program to another,
these instructions account for 0-9.6 percent of all the
dynamic memory references. Programs such as 124.m88ksim,
134.perl, and 101.tomcatv have more instructions that access
multiple regions than other programs.

The strong correspondence between memory instruc-
tions and the memory regions they access is a natural
consequence of how programs are written. Most memory
instructions access either a fixed location (e.g., static
variables and temporary local variables) or a set of locations
that belong to (instances of) a single data structure, such as
an array or C structure, that is allocated in a predetermined
region. Therefore, even when it is difficult to predict the
exact address of a memory reference, it is still feasible to
predict its access region, as will be shown in this section.

Integer programs, except 099.go, have a significant
number of heap-accessing instructions as they allocate
many data structures dynamically, while FP programs do
not. It is interesting to note that, although each class varies

much in its size, the sum of the “D” and “H” classes
remains roughly comparable across programs.

Over 50 percent of all the static memory instructions only
access the program’s stack region at runtime on average.
These instructions are for passing procedure parameters,
spilling and reloading registers, and storing local variables.
The static and dynamic distribution of the instructions from
different classes will be determined by the writing style of
the programmer, the programming language used, the
underlying processor architecture, and how the compiler
generates memory reference instructions, e.g., during
register allocation, etc.

3.2.2 Interleaving of Accesses to Different Regions

We address two important questions for the data-
decoupled architecture to be effective [4]: 1) How many
dynamic references in application programs are directed to
each access region and 2) how accesses to different regions
are interleaved. Answers to these questions will provide a
notable insight into how much memory bandwidth (or how
many cache ports) is required by the memory accesses
toward each region. Such information is also useful in

— —_— | _ | — 18 =m0

D/H/S
)]
5
'1;0-8‘* B B N | | | mH/S
B 50.4 511
S D/S
= 0.6 — E— — E—— — E— —
g || ||
= 1 mD/H
'g S— — — G
goo M — N

. B 2
b7] S
—
o
c
45.4
Bl O - =t
31.6

£

D

0

go m88ksim gcc compress i ijpeg

perl vortex tomcatv swim su2cor mgrid Int.Avg FP.Avg

Fig. 2. Breakdown of static memory instructions based on the region(s) they access at runtime. “D” stands for data region, “H” heap region, and “S”
stack region. “D/S” denotes the instructions that access both the data and the stack regions when the program is executed.

TABLE 2

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS

Average Number of Data, Heap, and Stack Accesses in the Last 32 and 64 Instructions

713

Window Size = 32 Window Size = 64

Benchmark Data ‘ Heap | Stack Data ‘ Heap | Stack
g0 6.11(2.71) [0.00 (0.00) [3.61 (4.62) [1223 (4.37) [0.00(0.00) [7.23 (7.83)
m88ksim || 2.91 (2.45) [214 (3.69) | 1.90(220) | 5.82(2.18) | 429(721) | 3.81(3.35)
gec 3.48(4.23) [1.69 2.36) [645(5.13) | 6.96(7.97) [338(4.09) | 1291 (8.54)
compress | 9.94 (3.70) | 0.00 (0.02) | 1.08 (1.50) || 19.86 (6.42) | 0.00 (0.01) | 2.15(2.05)
Ii 270 (1.94) [524 (3.77) | 7.09 (4.64) | 5.40 (3.21) [1048 (6.25) | 14.17 (7.44)
ijpeg 141 (2.22) | 345(3.72) | 4.10(4.94) || 2.82(4.33) | 6.90(6.95 | 8.20(8.80)
perl 2.06 (2.01) [479 2.91) [629 (5.42) | 4.11(3.01) [9.59 (4.34) | 12.58 (8.92)
vortex [1.92(1.42) [2.80 (3.74) | 11.81 (5.06) || 3.84(2.10) | 5.60 (6.63) | 23.63 (7.88)
tomcaty || 3.96 (3.33) [0.63 (1.38) | 5.97 (5.83) | 7.93(5.72) [1.26 (2.47) [11.92 (10.05)
swim [6.06(5.09) [0.00 (0.00) | 3.35(4.45) || 12.11 (8.18) | 0.00 (0.00) | 6.69 (6.58)
su2cor || 7.38 (4.81) [044 (1.19) [2.98 (4.53) [14.76 (8.72) [0.88(2.12) [5.98(8.29)
mgrid [9.57 (2.98) [0.00(0.02) [2.58 (1.75) || 19.15 (4.41) [0.00 (0.04) [5.17 (3.00)
| Average [4.79(3.27) [1.77(248) | 477 (441) || 9.58(5.52) | 3.54(4.37) [9.54(7.34) |

Standard deviation of the distribution is shown in parentheses.

estimating the performance impact when separate cache
ports are provided for a certain memory region.

To answer the questions, we counted the number of
memory references in the last 32 or 64 instructions executed
(in a 32 or 64-wide “sliding instruction window”) every
cycle. After constructing the distribution of the collected
numbers (per region), we draw from it two major metrics
used in this section: 1) the average number of memory
accesses in the window and 2) the standard deviation of
them. The standard deviation shows the “bursty-ness” a
group of memory references exhibit; the higher it is, the
more bursty the memory references are. The standard
deviation becomes large when the occurrences of memory
accesses are clustered. Table 2 reports the results.

Three observations are made. First, either data or stack
accesses consume more memory bandwidth than the other
two types of accesses in all the programs studied. There are
six programs (099.go, 124.m88ksim, 129.compress, 102.swim,
103.su2cor, and 107.mgrid) that have more data accesses than
heap or stack accesses. The other six programs have more
stack references than data or heap references. All the
programs except one (124.m88ksim) have fewer heap
references than stack references.

Second, comparing the average number of accesses and
the standard deviation, accesses to the data region are less
bursty than accesses to the heap or stack region. Data
accesses are strictly bursty* in only two programs (126.gcc
and 132.ijpeg), while heap accesses are strictly bursty in
eight programs and stack accesses in six programs when the
window size is 32. When the window size is 64, however,
only three programs (099.g0, 132.ijpeg, and 103.su2cor) have
bursty stack accesses.

Third, as pointed out earlier, there are few heap accesses
in floating-point programs. In programs that have many
heap accesses, such as 130.1i, 132.ijpeg, and 134.perl, there are
relatively fewer data accesses, suggesting that these

4. In this paper, accesses to a region are considered strictly bursty if the
average number of accesses in the given instruction window is smaller than
the standard deviation. 132.ijpeg’s data, heap, and stack accesses are all
strictly bursty, for instance.

programs distribute their data structures and the related
accesses among the data and the heap regions as necessary.
Furthermore, it is shown that heap accesses are quite
bursty, even when the window size is 64. This implies that
processing heap accesses separately will not generally bring
much benefit, especially for the floating-point programs.

From the above observations, it is concluded that many
programs have relatively constant memory bandwidth
demand for data and stack accesses, especially when the
processor buffers many instructions to search for indepen-
dent instructions to achieve higher performance.

3.3 A Case for Decoupling Stack Accesses

The previous subsection suggests that if an extra cache for
stack references is provided, the data cache bandwidth can
be saved significantly for many programs. Heap access
distribution showed irregular shapes among different
programs and in different phases in a single program.
Therefore, if one wishes to partition the set of memory
access instructions into two groups that access distinct
memory regions, the stack-accessing instructions are a good
candidate to decouple from others. The remainder of this
paper focuses on servicing stack and nonstack references
separately with two exclusive caches. The details of the
architectural change and the effects will be discussed in
Section 4.

In addition to the above observations, there are also other
practical considerations that favor separate handling of
stack accesses. We will show in Section 4.5 that stack
accesses show a very high degree of data locality and a
separate cache for stack need not be as large as a
conventional data cache to attain a high hit rate (also in
[7]). A 4-KB stack cache achieved over 99.5 percent hit rate
for the SPEC95 benchmark programs, with an average of
about 99.9 percent.

3.4 Predicting Access Regions

3.4.1 Dynamic Access Region Prediction Strategies

Memory instructions can be categorized into three classes:
ones that always access the stack (“S” in Fig. 2), ones that

714

N bits
PC: 001001101 ... 01100

P N-bitindex

- |olo]-

A

2 -entry [l
ARPT

Run-time context:
1011 ... 010

Fig. 3. Operation of the ARPT with 1-bit entries. N-bits from PC (XOR’ed
with context bits) is used to index an 2¥-entry ARPT.

always access nonstack regions (“D,” “H,” or “D/H”), and
ones that can access both the stack and nonstack regions.
The goal of the discussions in this section is to develop an
efficient mechanism to accurately predict which region
(stack or nonstack) an instruction will access at runtime,
given the program counter (PC) of it. We use a hardware
table called access region prediction table (ARPT), similar to
branch prediction table, and a set of heuristics for higher
prediction accuracy. The prediction result, available as early
as at the fetch stage, is used to guide the instruction
dispatcher for data decoupling, as discussed in Section 4. A
schematic figure to illustrate how the ARPT operates is
given in Fig. 3.

Note that it is already shown that most instructions
access only a single region during program execution in
Fig. 2. Therefore, if a single bit is allocated for each static
memory instruction to store the previously accessed region,
e.g., using “1” to indicate stack and “0” to indicate nonstack,
the access region of most instructions can be accurately
predicted from next time by just looking up their history bit.
This is called the simple one-bit scheme in this paper.
Alternatively, we can use two bits per instruction to add
hysteresis or inertia to prediction (simple two-bit scheme).

There are two issues in obtaining good prediction
accuracy given the above base predictors. First, when a
memory instruction is first executed, i.e., the history of the
instruction is not available, how do we predict the access
region of it?° The second issue is how we can effectively
handle a memory instruction that accesses the stack (“S”)
and nonstack (“N”) regions irregularly, e.g.,
“SNSNSNNNSN.”

To cover the above first issue, we note that the
addressing mode of many memory instructions immedi-
ately reveals the regions that will be accessed. We use the
following baseline heuristics in our study:®

(Static Prediction):

1. If the addressing mode is constant, the instruction
will access a nonstack region.

2. If $sp (stack pointer) or $fp (frame pointer) is used
for indexing, the instruction will access the stack
region.

5. Because we don’t use a tag or valid bit in the ARPT, this is similar to
“How do we initialize the content of the ARPT entries?”

6. This is based on Simplescalar’s Portable ISA (PISA) [3]. However, the
discussions can be easily extended to other ISAs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

3. If $gp (global pointer) is used for indexing, the
instruction will access a nonstack region.

4. TFor other cases, i.e. instructions with an index
register other than $sp, $fp, or $gp, predict that a
nonstack region will be accessed.

The addressing mode information can be obtained early
from the predecoding logic or the decoding stage at the
latest. In any case, the information from the ARPT at the
fetch stage will be discarded by the instruction dispatcher if
the addressing mode information is available from the
(pre)decoder. Fig. 4 shows that many instructions, over
50 percent on average, manifest their access regions in their
addressing mode (lower dark bars). In order to save space
in the ARPT, these instructions are not recorded. It is noted
that a compiler has more knowledge of the access region of
memory instructions than is disclosed in the addressing
mode of them. The impact of transporting compiler
information to the hardware will be studied in Section 3.5.2.

Next, we use an ARPT index function with additional
runtime information to tackle the second issue. Fig. 3 shows
how the ARPT is indexed with the PC of the memory
reference instruction XOR’ed with a string of bits, labeled
“runtime context.” We consider two types of runtime
context in our work: global branch history (GBH) and caller’s
identification (CID). Modern branch predictors already use
the GBH to index the branch prediction table [19]. The path
through which the control reaches a memory instruction,
like in a branch predictor, may help predict the behavior of
the memory instruction. Considering which procedure
called the current procedure gives a valuable insight into
which region a pointered reference will access (such as
*parm1 in Fig. 1) because it is likely that the calling
procedure passes to the called procedure the same set of
arguments or at least the arguments of the same types
repeatedly. The link register usually keeps the next PC of the
call instruction (that resides in the calling procedure) and
thus can be used as a unique CID. It is also possible to
combine these two types of information by concatenating a
certain number of bits from the GBH and also from the CID
to form a value to be used as context bits.

We evaluated the following five different schemes with
an unlimited ARPT: the baseline static classification
(STATIC), simple 1-bit scheme (1-BIT), 1-bit with GBH (1-
BIT-GBH), 1-bit with CID (1-BIT-CID), and 1-bit with both the
GBH and CID (1-BIT-HYBRID). When GBH and CID are used
together, we use the lower 8 bits from the GBH and lower
24 bits from the CID concatenated together to form a 32-bit
context.” Fig. 4 shows the results; Overall, 1-BIT-HYBRID
performed the best in terms of prediction rate (99.89 percent
and 100 percent for the integer and floating-point programs
respectively).®

The 1-BIT scheme outperformed 1-BIT-GBH and 1-BIT-
CID. This is because adding some runtime context in the
indexing function increases the number of entries in ARPT
(as shown in Table 3) and causes unnecessary cold misses
for certain memory instructions that don’t need any

7. Experiments revealed that this combination provides reasonable
performance across programs.

8. We omit presenting the performance of 2-bit schemes because their
performance is consistently lower than that of 1-bit schemes.

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS

100%

80% [—

60%

40%

Correctly Classified Instr.

20%

ijpeg

o m88ksim gcc compress i

0%

g

perl

715

|I I I ‘ I I Predicted

W Known from Instr.
1
vortex tomcatv swim su2cor

mgrid Int.Avg FP.Avg

Fig. 4. Percentage of dynamic memory instructions that are correctly classified into stack and nonstack regions using various schemes. Bars for
each benchmark program denote, from left, the static classification, the simple 1-bit scheme, the 1-bit scheme w/ GBH context, the 1-bit scheme w/

CID, and the 1-bit scheme w/ hybrid context (8-bit GBH and 24-bit CID).

runtime context, but still can be reached via a number of
different procedures or control flows. These misses offset
the benefit of using the context bits and, in many cases, lead
to lower overall prediction rate unless the obtained benefit
is large enough. 147.vortex and 103.su2cor are the examples
where 1-BIT is the clear winner over 1-BIT-CID. Notice,
however, that indexing with either runtime context can lead
to better performance than 1-BIT, as is observed in
107.mgrid.

3.5 Performance of the Access Region Prediction
Table (ARPT)

3.5.1 ARPT of Limited Size

We study the impact of the ARPT size on the prediction
rate. Fig. 5 (lower light bars) shows the performance of
1-bIT-HYBRID when the ARPT size is varied from 64K to 8K
entries. In general, the ARPT loses the prediction accuracy
when its size becomes smaller. Certain programs, such as
099.g0, 126.gcc, 147.vortex, and 101.tomcatv, are more
sensitive to the ARPT size than others. Table 3 indicates
that these programs require significantly more entries than
other programs when a type of runtime context is used
(except 101.tomcatv), putting high pressure on the ARPT

TABLE 3
Number of Entries Occupied in an Unlimited ARPT, when Used
with Different Context Bits for Indexing

| Bench. [StaTic | w/GBH | w/CID [w/HYBRID |
g0 7896 | 9733 (23%) | 13465 (71%) | 34421 (336%)
m88ksim 1227 | 1319(7%) | 1326 (8%) | 2093 (71%)
gce 10521 | 11484 (9%) | 15949 (52%) | 30517 (190%)
compress 556 | 590 (6%) 573 (3%) 765 (38%)
li 822 | 862(5%) | 973(18%) | 1467 (18%)
ijpeg 3137 | 3467 (11%) | 2681 (-15%) | 5002 (59%)
perl 2140 | 2255 (5%) | 2874 (34%) | 4229 (98%)
vortex 6836 | 7094 (4%) | 5833 (-15%) | 12200 (78%)
tomcaty 877 | 954(9%) | 1033(18%) | 1430 (63%)
swim 058 | 1062 (11%) | 1072(12%) | 1520 (59%)
suZcor 1760 | 2220 (26%) | 3214 (83%) | 5887 (234%)
mgrid 1095 | 132221%) | 1519 (39%) | 2620 (139%)

Increase in number compared to “Static Prediction” is shown in
parentheses.

size. In the case of 101.tomcatv, it seems that there are
negative interferences in the ARPT. This is indirectly
supported by the fact that the availability of compiler
information removes any deficiencies caused by the limited
ARPT size. It is interesting to observe that a limited ARPT
performs better than an unlimited ARPT in the case of
126.gcc. This means that there are positive interferences
between different memory instructions that map to a single
ARPT entry.

To summarize, a 32K-entry ARPT achieved over 99.9 per-
cent prediction accuracy for both the integer and floating-
point programs studied. The necessary hardware resources
for implementing a 32K-entry ARPT is small—only 4 KB of
space.

3.5.2 Effects of Compiler Hints

A compiler often has knowledge of which region a memory
instruction will access at runtime. For example, b[i] and cfi]
in Fig. 1 are easily identifiable as heap and data references.
Most stack accesses are accurately identifiable when the
compiler comes across variable declarations, handles a
procedure call, or performs register allocation and reload-
ing. For nonstack accesses, the type and storage information
of a variable symbol provides necessary information. A
simple compiler algorithm to determine the access region of
a memory instruction is shown in Fig. 6.

This section studies the effects of augmenting each static
memory instruction with a tag that indicates if it is a stack
access, a nonstack access, or that the compiler cannot
distinguish (such as *parm1 in Fig. 1). For the experiments,
we used profiled region information gathered from pro-
gram runs instead of implementing the compiler algorithm
and performing static analysis. The accessed region(s) of
each instruction is saved in the profile data and we
assumed that an instruction can be classified by a compiler
if it is shown to access only a single region during program
execution. Therefore, the quality of the compiler informa-
tion used in this section should be interpreted as one that is
from a very accurate compiler analysis (i.e., upper bound).

The compiler information helps to improve the perfor-
mance of the ARPT in two ways. First, the resultant
prediction rate becomes higher because many instructions
have been taken care of by the compiler and bypass the

716

1.0%

0.53
0.56

VOL. 50, NO. 7, JULY 2001

w/o compier hints
W w/ compier hints

IEEE TRANSACTIONS ON COMPUTERS,

0.65

1051

0.46

0.5%

Misprediction Rate
0.35
0.20
0.28
0.44

0.13

unil

0.36

0.21

0.19
0.21

0.0%

go m88ksim gcc compress i ijpeg

perl

vortex tomcatv swim su2cor mgrid Int.Avg FP.Avg

Fig. 5. Misprediction rate of the 1-BIT-HYBRID when ARPT size is varied. Results for the ARPT of unlimited size, 64K, 32K, 16K, and 8K entries are
shown from left. The dark, lower portion of each bar denotes the ARPT misprediction rate when compiler information is available. For 130./i and
101.tomcatv, the misprediction rate was 0 if compiler information is provided.

prediction mechanism. Second, the space of the ARPT is
saved since many correctly tagged instructions do not need
to occupy the entries in the ARPT. This will decrease the
effects of negative interferences and allow us to use a
smaller ARPT to achieve a given prediction rate. In other
words, compiler hints will reduce the pressure on the ARPT
size, especially when a lot of entries are needed (i.e., when a
type of context bits is used).

Fig. 5 (dark portions) shows that, in the presence of
compiler information, 1) the prediction accuracy is higher
and 2) the performance of the ARPT becomes less sensitive
to its size. 101.tomcatv benefits greatly from the compiler
information when the ARPT has less than 32K entries. It is
shown also, however, that the misprediction rate without
compiler information is already very low when the ARPT
has 32K entries or more; therefore, we conclude that,
although compiler information is useful, the hardware
mechanism proposed in this paper is accurate enough for
effective data decoupling, as will be shown in the next
section. Use of the dynamic technique allows running

mem_type classify_mem (mem_instr* zustr)
{
if (is_local_var (ins#)) return MT_STACK;
if (is_static_var (sustr)) return MT_NONSTACK;

// Pointer deref.; assume ptr is the pointer for instr
int flag = -1;
for all def in UD-chain for ptr {
if (is_function_param (e/)) return MT_UNKNOWN;
if (point_to_unknown (dg/)) return MT_UNKNOWN;
if (point_to_stack (7))
if (flag == 0) return MT_UNKNOWN;
else flag = 1;
if (point_to_nonstack (4f))
if (flag == 1) return MT_UNKNOWN;
else flag = 0;
3
if (flag) return MT_STACK;
return MT_NONSTACK;

¥

Fig. 6. A simple compiler algorithm to classify the access region of a
memory instruction.

existing binaries on a data-decoupled processor without
noticeable loss of performance.

4 DATA-DECOUPLING FOR A WIDE-ISSUE
SUPERSCALAR PROCESSOR

4.1 Definition

The idea of data decoupling is to partition the set of memory
access instructions into two (or more) separate instruction
streams before the instructions enter the instruction
window, where they wait until they become ready to issue.
Partitioning of instructions will be performed in such a way
that the data locations accessed by the instructions in one
stream will not be overlapped by the ones from another
stream. Instructions in each partitioned stream are then sent
to a set of dedicated reservation stations (that compose a
part of the instruction window) after they are decoded;
eventually, each set of reservation stations feeds a separate
data cache (see Fig. 7).

The proposed approach can ease the hardware complex-
ity of a wide-issue superscalar processor in two ways. First,
the bandwidth requirements on the data cache can be
mitigated since multiple caches serve the memory refer-
ences. Considering that existing multiported data cache
schemes become very expensive and inefficient as more
ports are required [16], [25], the reduction in port require-
ments can lead to a much cheaper and more efficient cache
design. Second, the window logic to select and arbitrate
the ready memory instructions and the network to route
them to the actual cache ports can be simpler since each
memory window can now be made smaller and each
cache can have fewer ports. The window logic has been
pointed out to be one of the most critical hardware
components as the processor becomes wide and a more
advanced process technology with smaller feature sizes is
used [23]. Because the delay of the window logic is
proportional to the square of the instruction window size
and the square of the issue bandwidth, this partitioning
can become a crucial advantage.

It should be noted that, given the same number of
available cache ports, the net effect of data decoupling is not
an increased IPC, but decreased hardware complexity—

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS 717

PC
Fetch DR
ARPT ‘o
]
I A S
Decode/ <SP o— g
Dispatch : v i
: Memory Inst. s
- Verification/..........p ... R
Update : 02
Address : l 1 :
Calc. :
Mem 1/
L8 © Addr

Mem 2

Write—Back

Fig. 7. an example processor pipeline augmented with the ARPT and a
separate memory pipeline for stack and nonstack references each.

fewer cache port requirements and simpler instruction issue
logic. In fact, the resulting IPC could be impaired due to
unbalanced resource utilization. However, since it is
increasingly difficult to add more than two ports to a cache
and to build a wide instruction window without penalizing
clock cycle time, achieving a comparable performance with
simpler hardware is a valid goal [23]. This is a very critical
issue for the future wide-issue processor proposals [17],
[24], [27]; they put more pressure on the data cache
bandwidth as they aggressively speculate on control and
register values and use high-bandwidth instruction caches
[37], [26]. Under such conditions, the proposed approach
can in turn have a performance advantage by providing
more data bandwidth than a conventional technique at the
same level of hardware complexity. Furthermore, the
proposed approach can expose opportunities for reduced
memory access latency by properly partitioning memory
references and optimizing each stream.

4.2 Architectural Support

To service local variable accesses efficiently, a specialized
hardware organization to simulate the runtime stack may
appear attractive [7], [10]. However, we use a more general
cache design, called the local variable cache (LVC), in the
framework of our data-decoupled architecture. This
approach has two advantages; First, the LVC is a conven-
tional cache and can leverage the most efficient current
design. Second, certain events, such as a buffer overflow
due to bursty stack growth (that can happen when a
recursive function is called, for example) and a context
switch, are easily handled without CPU intervention.

The LVC is associated with a group of reservation
stations, called the local variable access queue (LVAQ). It has
the same organization as the conventional load store queue
(LSQ). Since the LVC is placed at the same level as the
L1 cache, it will be attached to the memory bus connecting
to the L2 cache and will make the bus arbitration logic
slightly more complex.

Further optimizations are possible for the LVAQ and the
LVC. Two such techniques to improve the local variable
accesses are introduced:

e Fast data forwarding. To decrease the memory load
latency, data from a store can be forwarded to a later
load. The MIPS R10000 processor forwards data to
address-matching loads in the LSQ on a refill [36].
By tracking previously manifested dependences and
keeping store data in a separate hardware table, data
forwarding from a store to a load can be performed
speculatively [21], [34]. There is another opportunity
to perform fast forwarding in the LVAQ without
keeping dependence tables (i.e., no speculation).
Accesses to the stack region in a procedure are
usually based on the same value of $sp, i.e., $sp is
not updated within a procedure. The dependence
checking hardware can use the offset field in
instructions to identify a matching store-load pair
within a function frame, even before their effective
addresses are calculated, allowing faster bypassing
of data. This technique will be beneficial when there
are many local store-reload pairs within a small
section of code, such as spill codes generated by a
compiler.

o Access combining [35]. When a program or a
program region contain many local variable ac-
cesses, the number of LVC ports can become a
performance bottleneck. In fact, a procedure call/
return generates a sequence of stack accesses for
saving/restoring registers and passing parameters.
These stack accesses show strong spatial locality, i.e.,
accessing adjacent memory locations in a row. Access
combining tries to combine two or more contiguous
references that fall onto the same LVC line at the
expense of wider LVC ports, buffers, and associated
logic. The technique will decrease the traffic to the
LVC, relieving the bandwidth requirement on it.

4.3 Pipeline Design
We describe in this subsection an example memory pipeline
of a data-decoupled processor equipped with an ARPT.

e Fetch stage. ARPT is accessed with current PC
XOR’ed with runtime context bits. A single bit value
returned from the ARPT is passed to the decode
stage. Note that this way of accessing the ARPT is a
baseline design and that other ways of implementing
the ARPT access mechanism are possible. For
example, memory instructions in the trace cache
[26] lines can be tagged with prediction bits to
relieve the high bandwidth requirements on the
ARPT. A part of ARPT accesses can be deferred to
the decode stage also.

e Decode (and Dispatch) stage. Fetched instructions
are decoded and dispatched to issue slots of various
execution units. If a decoded instruction is a memory

718

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

TABLE 4
The Base Machine Model

| BASE MACHINE MODEL

Issue width 16
Number of regs. 32 GPRs/32 FPRs
ROB/LSQ size 256/128

Functional units

16 integer + 16 FP ALUs, 4 integer + 4 FP MULT/DIV units.

Value predictor

Stride-based predictor for register values. 16K-entry table.

L1 data cache

2-way sel-assoc. 64 KB. 2-cycle hil (ime. Varying number of ports.

L2 data cache 4-way set-assoc. 512 KB. 12-cycle access time.
Memory 50-cycle access time. Fully interleaved.
Local Var. Cache Direct-mapped. 4 KB. 1-cycle access time.
ARPT 32K 1-bit entries.

Instruction cache

Perfect I-cache with a 1-cycle latency.

Branch predictor

Perfect.

Inst. latencies

Same as those of MIPS R10000 [36].

Decode and commit widths are the same as the issue width.

instruction, checking is made if the addressing mode
shows the access region of the instruction. If so, the
ARPT bit from the fetch stage is simply discarded;
however, if the addressing mode does not give any
hint, the ARPT bit guides which of the two
instruction queues, LSQ or LVAQ, the instruction
is steered into. Since this dynamic memory stream
partitioning is speculative, it is required that each
memory access be verified against the correct access
region information available later when the actual
address is calculated.

e Address calculation stage. The address of a ready
memory instruction in LSQ or LVAQ is calculated in
this stage. While waiting for dependences to be
resolved and for available cache ports, a load
instruction could receive bypassed data from pre-
vious stores.

e Memory access stages. Using the address calculated
in the previous stage, TLB and cache are accessed
in the first memory access stage. In the same cycle,
access region verification is done through a
verification unit. Alternatively, the TLB can be
used for verification, where each TLB entry is
extended with a single bit, indicating whether the
translated page belongs to the designated region
(in this paper, the stack) or not. Storing such
information can be done accurately and efficiently
when a page is allocated by the runtime system.
Note that both accessing the cache and the
verification action are done simultaneously.

When it is known that an instruction has been
placed in a wrong pipeline, the instruction will be
reissued to the right queue and the ARPT will be
updated. As the depending instructions are still
waiting in the instruction queue, the recovery action
on detecting a mispredicted memory instruction will
be either squashing those instructions, or just
reestablishing the dependence chain from the pre-
viously mispredicted instruction [17]. Because the
verification process will eventually prevent any store
instruction from writing data to a wrong cache, as
well as any instruction from executing on a wrong

load value, the coherence in the current dual cache
scheme will be guaranteed.

4.4 Methodology and Architecture Model

We use a detailed timing simulator based on the
Simplescalar tool set [3]. The machine model used in the
timing simulator supports out-of-order issue and execution,
based on the Register Update Unit (RUU) [30]. The RUU
scheme uses a reorder buffer (ROB) to automatically
perform register renaming and hold the results of pending
instructions. In each cycle, the ROB retires completed
instructions in program order to the architected register
file. The processor pipeline consists of six stages: fetch,
dispatch (decode and register renaming), issue, execution,
write-back, and commit. Depending on the instruction type,
more than a cycle can be taken in the execution stage.

The processor’'s memory system employs a Load Store
Queue (LSQ). Store values are placed in the queue if the
store is speculative. Loads are dispatched to the memory
system when the addresses of all previous stores are
known. Loads may be satisfied either by the memory
system or by an earlier store value residing in the queue.
In the latter case, the store-to-load forwarding delay is
one cycle.

We use an aggressive processor model that can issue up
to 16 instructions per cycle. The model represents a future
wide-issue processor with aggressive issue bandwidth from
a large instruction window. The ROB has 256 entries and
the LSQ has 128 entries, which are derived from the MIPS
R10000 implementation [36]. The ROB and the LSQ
effectively form the instruction window of the processor.
The primary on-chip data cache that is 64 KB and 2-way set-
associative has a 2-cycle hit time (unless otherwise stated),
as in some of the recent machines [36], [12]. The 512-KB L2
cache has a 12-cycle hit latency. Both the caches are lock-up
free.

We implemented a stride-based value predictor for the
register values as the performance improvement achieved
by value prediction techniques is mainly from the register
data flow [17]. The value prediction table has 16K entries in
our processor model.

We use an aggressive front-end with a perfect instruction
cache and a perfect branch predictor to assert the maximum

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS 719

4.56

Instructions Per Cycle (IPC)

4
3
2
1
0

go m88ksim gcc compress i iipeg

Fig. 8. Instruction Per Cycle (IPC) of the baseline (2+0) configuration.

pressure on the data memory bandwidth. This setting is
necessary to accurately study the impact of the proposed
techniques by eliminating other factors that affect the
measured performance. Due to this, the primary perfor-
mance metric used in the result section is relative
performance, after presenting the base IPC numbers at the
beginning. Important parameters of the base machine
model are summarized in Table 4.

For data decoupling, the direct-mapped 1-cycle LVC is
sized to 4 KB. The ARPT has 32K 1-bit entries with no tags
or valid bits (4 KB table size). For ARPT indexing, the 15 bits
of PC (above least-significant zeros due to a large instruc-
tion size) XOR’ed with context bits composed of 8 bits from
global history and 7 bits from link register. The LSQ/LVAQ
size was set to 96/96 entries each. On detecting an ARPT
misprediction, the mispredicted instruction will be reissued
to the right instruction queue in a single cycle after
accessing the verification unit (e.g., TLB). As a result, the
dependent instructions will further reside in their respec-
tive reservation stations, delayed at least three cycles in our
pipeline model.

In the following discussions, the notation “(N+M)” is
used to denote a processor configuration with an N-port
data cache and an M-port LVC. When M equals 0, the
configuration is a conventional memory design with an
N-port data cache.

4.5 Experimental Results
4.5.1 Baseline Performance

The aggressive processor model with the perfect front end
resulted in very high baseline IPC numbers, as shown in
Fig. 8. The perfect branch prediction assumption especially
made the performance of integer programs comparable to
that of numerical applications. The performance of this
(2+0) configuration is, however, severely restricted by the
cache bandwidth. Fig. 11 shows that if cache has uncon-
strained bandwidth, represented by the (16+0) configura-
tion, the performance is boosted by up to 80 percent
(147.vortex), with an average of over 20 percent. Experi-
ments further revealed that adopting a cache with un-
limited size will not create such performance gain, implying
that the cache hit rate becomes a secondary performance
factor to the cache bandwidth, as long as a reasonable cache
size is used.

perl

vortex tomcatv swim su200r mgrid Int.Avg FP.Avg

4.5.2 LVC Size

The size of the LVC should be carefully chosen to keep the
miss rate low. At the same time, the LVC should be
sufficiently small and simple to keep the access time short.

Fig. 9 shows the measured miss rates when the LVC size
is varied from 0.5 KB to 4 KB. A 2-KB LVC achieves a hit
rate of over 99 percent for all the programs except 126.gcc. A
4-KB LVC obtains a hit rate of 99.5 percent or more for all
the programs, with an average of about 99.9 percent. The
major reason why a small LVC can achieve a high hit rate is
that function frames tend to be very small [7], [4].
Furthermore, most of the programs have a call depth of
four to five routines [33]. The line size of the LVC, be it 32 or
64 Bytes, had negligible effects on the hit rate with an LVC
of 2 KB or a larger size. The hit rate of an LVC was also
relatively insensitive to the input data because the function
frames are generally determined at compile time. For the
rest of the experiments, a 4-KB, direct-mapped LVC with an
one-cycle hit latency is used.

The additional caching space provided by a 4-KB LVC
resulted in slight decrease in traffic to L2 cache for all the
programs as some conflicts between stack and nonstack
accesses in the data cache are removed. Therefore, when it
is difficult to have a large L1 data cache in a wide-issue
processor (in order to keep the clock cycle time short), data
decoupling can provide a way to effectively increase the
cache size. For example, 130./i and 147.vortex showed a

9
8 4842 —— 126.gcc
—=— Avg.

7 129.compress
:\c? 6
85
2 4 \ 3:98
= ;
2
=3 \

) 5.2.30

1 \17 o

0 0.02 0.00 2L PPt

0.5 KB 1KB 2KB 4KB

Fig. 9. Miss rates of the LVC of different sizes. 126.gcc and
129.compress show the highest and lowest miss rate, respectively. A
direct-mapped LVC with four ports is used for measurement.

720

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

TABLE 5
Performance Improvement with Fast Data Forwarding under the (3+2) Configuration
Program || 099.go | 124.m88ksim 126.gcc 129.compress 130.1i 132.ijpeg
Speedup || 2.1% 0% 1.2% 1.2% 0.3% 1.9%
Program || 134.perl | 147.vortex | 101.tomcatv 102.swim 103.su2cor | 107.mgrid
Speedup || 3.1% 3.9% 3.9% 0.2% 0.5% 0%

considerable reduction in the L2 cache accesses and,
accordingly, the traffic on the memory bus, of 24 percent
and 7 percent, respectively, when a 32-KB data cache was
assisted by a 2-KB LVC [4]. This decrease in the memory
bus traffic will improve the overall performance of a
processor in the presence of heavy traffic on the bus, as
well as the power consumption caused by accessing larger
memories and the (high capacitance) bus.

4.5.3 Impact of Fast Data Forwarding in LVAQ

Table 5 shows the performance improvement provided by
fast data forwarding. Speedups of up to 3.9 percent were
observed. Looking at individual programs, 124.m88ksim
does not benefit from the technique at all because only
about 1 percent of the loads actually find their values in the
LVAQ. On the other hand, 129.compress gains a speedup of
1.2 percent even though it has fewer local variable accesses
because almost 80 percent of all the local variable loads find
their values in the LVAQ. This suggests that the reuse
distance of local variable accesses in 129.compress is
relatively short.

In spite of many local variable accesses, 130./i didn’t get a
noticeable speedup because most of the local variable
accesses are not on the critical path of the program.
Bandwidth, therefore, is more important than latency in
this case. Fig. 11 shows that, when the memory bandwidth
is the performance bottleneck (baseline (2+0) configuration),
adding a two-port LVC achieved a spectacular speedup of
over 50 percent (represented by the (2+2) configuration),
whereas much smaller speedup is achievable when there is
sufficient bandwidth already (the (3+3) configurations
compared with the (3+0) configuration).

The net performance gain produced by fast data
forwarding was not impressive. However, when cache
access latencies should be prolonged to meet the desired

N
T

5

~12

<

< 10.1 108 W 2-way Combining
E‘ 10 I 3-way Combining [
-_% 8.4 4-way Combining
E g |

o

O

2

=‘_ 6 | |

g

o

£ 4 i

[}

5

g

o

E

(3+1) (3+2)

Fig. 10. Performance of access combining. N-way combining looks at up
to N consecutive entries in the LVAQ for access combining.

(fast) clock rate, the impact of this technique can become
more significant.

4.5.4 Impact of Access Combining in LVAQ

Fig. 10 shows the effect of access combining under the (3+1)
and (3+2) configurations. Two-way combining achieves a
speedup of around 8 percent and 2 percent over “No
Combining” in each configuration. Two programs, 130.li
and 147.vortex (not shown), exhibited a speedup of
16 percent and 26 percent, respectively, in the (3+1)
configuration. 147.vortex still crops over 12 percent speedup
in the (3+2) configuration.

The results suggest that access combining can consider-
ably reduce the bandwidth requirements on the LVC,
especially when the memory pressure is high (or when the
provided bandwidth is insufficient). Taking into account
the hardware complexity to implement access combining,’
the two-way combining seems to be a reasonable choice for
implementation.

4.5.5 Overall Performance

Fig. 11 shows the performance of various configurations
relative to that of the (2+0) configuration. The results clearly
show that the baseline configuration with a 2-ported data
cache does not provide enough bandwidth: The (16+0)
configuration (i.e., unlimited bandwidth) improves the
performance by 33 percent (integer) and 25 percent
(floating-point) on average, indicating that there is large
room for performance improvement when more data
bandwidth is provided beyond 2 ports. For 147.vortex, the
improvement was as high as 80 percent. It is also
worthwhile to note that our experiments showed that the
(2+0) configuration with a 128 KB data cache produces little
performance improvement over the same configuration
with a 64 KB data cache (by less than 1 percent).

Two (3+0) configurations with a 2- and 3-cycle latency
achieved 21 percent and 18 percent improvement for the
integer programs, respectively, and 14 percent for the
floating-point programs. This shows that, when the
processor performance is limited by the data bandwidth,
the impact of access latency becomes smaller, especially in a
dynamically scheduled processor like our baseline model.
Only 099.g0 shows a sharp performance drop as a 3-cycle
latency is used for cache access. Floating-point programs
were hardly affected by the latency change, implying that
the latency was effectively hidden by out-of-order execu-
tion. Having a 4-ported data cache, represented by the (4+0)
configuration, improves the performance by 25 percent
(integer) and 20 percent (floating-point). Considering that

9. To implement two-way combining, for example, will require wider
(doubled) bus per port and two-input multiplexors for each subblock
corresponding to access unit, with slightly more complex control.

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS 721
.5 2.00
‘é (3+40), 2 cycle
S 2 W(3+0), 3 cycle
£ 1.80 x (4+0), 3 cycle H
8 o (242)
s s 3 H(2+3)
& 160 Sz n(3+3) -
= 2 n W (16+0), 2 cycle
2 N
3 o i o PR
S 1.40 e 8 0 %3
© M o g © Qi
E 2 - o N - g & < o o 8 B 9
5 . Ry A 3 § 85 d A 8= R A SR S oo
€ S ik ki o o 2 oa-toe 2 NG 2| oy 2 ng -2 SO
& 120 |5 = 2| T 2 = el =
o o]
2
3 o
o S5
[} -
& 1,00

m88ksim gcc compress i

g0 ijpeg

perl

vortex tomcatv swim su2cor mgrid Int.Avg FP.Avg

Fig. 11. Performance of various configurations compared with that of the baseline (2+0) model. The (16+0) configuration on the rightmost side is

shown as an upper bound (unlimited bandwidth).

adding more ports beyond four gives diminishing returns,
this configuration might become the choice for a conven-
tional design. However, the hardware complexity caused by
the large 128-entry LSQ and the cache can become
excessive. We have accordingly set the cache access time
to be three cycles for the configuration so as not to increase
the clock cycle time.

Comparing the (2+2) and (4+0) configurations, they
achieved similar performance for integer programs, but the
(4+0) configuration performed better for the floating-point
programs. Under the (2+2) configuration, floating-point
programs showed limited performance, mainly because
they have more bandwidth demand for data region than
stack. Therefore, attaching one more port to the LVC, the
(2+3) configuration, doesn’t help improve the performance
of these programs at all. On the other hand, certain integer
programs, like 126.gcc and 147.vortex, obtain additional
speedups.

The (3+3) configuration performs well for both the
integer and floating-point programs. For the integer
programs, this configuration was as good as the (16+0)
configuration on average, which is the limit case for our
study. For the floating-point programs, the (3+3) configura-
tion was close to the (4+0) configuration. In summary, when
it is not feasible to build a single many-ported data cache
attached to a large instruction window, a data-decoupled
configuration, such as (3+3), can become a viable alternative
that achieves a similar performance level. The configuration
choice should be made, however, after thoroughly investi-
gating the cost of implementing a particular multiported
data cache and related hardware complexity, as the studied
models in this paper assume perfect multiporting.

Finally, thanks to the high prediction accuracy of the
ARPT, increasing the misprediction penalty hardly affects
the overall performance. Adding five more cycles to the
misprediction penalty incurred only 0.6 percent perfor-
mance degradation on average.

5 CONCLUDING REMARKS

This paper studied an important behavior of memory access
instructions, called the access region locality, and how it is
used to predict the region of memory accesses. Utilizing the

access region locality, we showed the effectiveness of the
data decoupling as a way of increasing on-chip data
memory bandwidth. The following contributions are made
in the paper:

e A novel memory pipeline organization for a wide-
issue processor, called data-decoupled architecture,
is proposed. To achieve high data bandwidth with-
out placing much pressure on the data cache port
requirements and the window logic complexity, the
data-decoupled architecture partitions the memory
stream early before instructions are directed into the
instruction window.

e The notion of access region locality is introduced.
Also given is a set of detailed profile data, showing
that most memory reference instructions access only
a single region at runtime. The definition of access
region can be further refined so that the number of
access regions can be made larger to match increas-
ing need of bandwidth.

e Techniques to predict the access region of a memory
instruction before the actual effective address is
calculated are developed and evaluated. Results
show that the proposed prediction mechanism with
reasonable hardware resources can precisely deter-
mine the access region of an instruction (to be either
stack or nonstack reference) with an accuracy of over
99.9 percent on average.

e Using a detailed cycle-by-cycle simulator, we stu-
died the potential performance of a wide-issue
superscalar processor with the proposed data
decoupled memory pipeline that exploits the access
region locality. Results show that the proposed
decoupled approach secures comparable perfor-
mance compared to a conventional unified data
cache design with the same number of ports. In
certain cases, the proposed technique offers an
opportunity for performance improvement that is
not achieved by merely adding more ports to the
data cache.

Compiler and architectural considerations for efficient
memory handling remain as a very important part of
designing a balanced, cost-effective processor. We expect

722

that the decouple-and-conquer approach to the memory
bandwidth and/or latency problem, as proposed in this
paper, will be of greater significance as more aggressive
wide-issue processors emerge.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant numbers MIP-9610379 and CDA-
9502979; by the US Army Intelligence Center and Fort
Huachuca under contract DABT63-95-C-0127 and ARPA
order number D346, and a gift from the Intel Corporation.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the US Army Intelligence Center
and Fort Huachuca or the US government. The authors
thank Todd Austin and Doug Burger for developing the
Simplescalar tool set that has been indispensable for our
study. The anonymous referees provided many construc-
tive comments that greatly helped improve the quality of
this paper. Sangyeun Cho was supported in part by a
doctoral fellowship from the Korea Foundation for Ad-
vanced Studies (KFAS). Gyungho Lee was supported in
part by the US National Science Foundation under grant
number CCR-0073259 and by Alpha Processor, Inc.

REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] T.M. Austin and G.S. Sohi, “Zero-Cycle Loads: Microarchitecture
Support for Reducing Load Latency,” Proc. 28th Int’l Symp.
Microarchitecture, pp. 82-92, Nov. 1995.

[3] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version
2.0,” Technical Report No. 1342, Computer Sciences Dept., Univ.
of Wisconsin, June 1997.

[4] S. Cho, P.-C. Yew, and G. Lee, “Decoupling Local Variable
Accesses in a Wide-Issue Superscalar Processor,” Proc. 26th Int'l
Symp. Computer Architecture, pp. 100-110, May 1999.

[5] S. Cho, P.-C. Yew, and G. Lee, “Access Region Locality for High-
Bandwidth Processor Memory System Design,” Proc. 32nd Int’l
Symp. Microarchitecture, pp. 136-146, Nov. 1999.

[6] G. Chrysos and]. Emer, “Memory Dependence Prediction Using
Store Sets,” Proc. 25th Int’l Symp. Computer Architecture, pp. 142-
153, July 1998.

[7]1 D. Ditzel and R. McLellan, “Register Allocation for Free: The C
Machine Stack Cache,” Proc. Symp. Architectural Support for
Programming Languages and Operating Systems, pp. 48-56, Mar.
1982.

[8] J. Edmondson et al., “Internal Organization of the Alpha 21164, a
300-MHz, 64-Bit, Quad-Issue, CMOS RISC Microprocessor,”
Digital Technical ., vol. 7, no. 1, 1995.

[9]1 RJ. Eickemeyer and S. Vassiliadis, “A Load-Instruction Unit for
Pipelined Processors,” IBM]. Research and Development, vol. 9,
no. 2, 1993.

[10] M.J. Flynn and L.W. Hoevel, “Execution Architecture: The
DELtran Experiment,” IEEE Trans. Computers, vol. 32, no. 2,
pp- 156-175, Feb. 1983.

[11] L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,”
Microprocessor Report, vol. 9, no. 2, Feb. 1995.

[12] L. Gwennap, “Digital 21264 Sets New Standard,” Microprocessor
Report, vol. 10, no. 14, Oct. 1996.

[13] D. Hunt, “Advanced Performance Features of the 64-bit PA-8000,”
Proc. COMPCON, pp. 123-128, 1995.

[14] IBM, ASIC SA-27E Databook, 2000.

[15] M. Johnson, Superscalar Microprocessor Design. Prentice Hall, 1991.

[16] T.Juan,]]. Navarro, and O. Temam, “Data Caches for Superscalar
Processors,” Proc. Int'l Conf. Supercomputing, pp. 60-67, July 1997.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.7, JULY 2001

[17] M.H. Lipasti and].P. Shen, “Superspeculative Microarchitecture
for beyond AD 2000,” Computer, pp. 59-66, Sept. 1997.

[18] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen, “Value Locality and
Load Value Prediction,” Proc. Seventh Int’l Symp. Architectural
Support for Programming Languages and Operating Systems, pp. 138-
147, Oct. 1996.

[19] S. McFarling, “Combining Branch Predictors,” WRL Technical
Note TN-36, Digital Equipment Corp., June 1993.

[20] A. Moshovos, S.E. Breach, T.N. Vijaykumar, and G.S. Sohi,
“Dynamic Speculation and Synchronization of Data Depen-
dences,” Proc. 24th Int’l Symp. Computer Architecture, pp. 181-193,
June 1997.

[21] A. Moshovos and G.S. Sohi, “Streamlining Inter-Operation
Memory Communication via Data Dependence Prediction,” Proc.
30th Int’l Symp. Microarchitecture, pp. 235-245, Dec. 1997.

[22] NEC, Block Library CB-11 Family Databook, 2000.

[23] S. Parlacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. 24th Int’l Symp. Computer Architec-
ture, pp. 206-218, June 1997.

[24] Y.N. Patt, SJ. Patel, D.H. Friendly, and]. Stark, “One Billion
Transistors, One Uniprocessor, One Chip,” Computer, pp. 51-57,
Sept. 1997.

[25] J.A. Rivers, G.S. Tyson, E.S. Davidson, and T.M. Austin, “On
High-Bandwidth Data Cache Design for Multi-Issue Processors,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 46-56, Dec. 1997.

[26] E. Rotenberg, S. Bennet, and J.E. Smith, “Trace Cache: A Low
Latency Approach to High Bandwidth Instruction Fetching,” Proc.
29th Int’l Symp. Microarchitecture, pp. 24-34, Dec. 1996.

[27] E. Rotenberg, Q. Jacobson, and J.E. Smith, “Trace Processors,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 138-148, Dec. 1997.

[28] Samsung Electronics Co., STD130 Databook, 2000.

[29] Y. Sazeides and J.E. Smith, “The Predictability of Data Values,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 248-258, Dec. 1997.

[30] G.S. Sohi, “Instruction Issue Logic for High-Performance, Inter-
ruptible, Multiple Functional Unit, Pipelined Computers,” IEEE
Trans. Computers, vol. 39, no. 3, pp. 349-359, Mar. 1990.

[31] G.S. Sohi and M. Franklin, “High-Bandwidth Data Memory
Systems for Superscalar Processors,” Proc. Fourth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 53-62, Apr. 1991.

[32] The Standard Performance Evaluation Corporation, http://
www.specbench.org, 1995.

[33] Y. Tamir and C.H. Sequin, “Strategies for Managing the Register
File in RISC,” IEEE Trans. Computers, vol. 32, no. 11, pp. 977-989,
Nov. 1983.

[34] G. Tyson and T.M. Austin, “Improving the Accuracy and
Performance of Memory Communication Through Renaming,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 218-227, Dec. 1997.

[35] K.M. Wilson, K. Olukotun, and M. Rosenblum, “Increasing Cache
Port Efficiency for Dynamic Superscalar Microprocessors,” Proc.
23rd Int’l Symp. Computer Architecture, pp. 147-157, May 1996.

[36] K.C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

[37] T.-Y. Yeh, D.T. Marr, and Y.N. Patt, “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch Address
Cache,” Proc. Seventh Int’l Conf. Supercomputing, pp. 67-76, July
1993.

[38] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation
Techniques for Improving Load Related Instruction Scheduling,”
Proc. 26th Int’l Symp. Computer Architecture, pp. 42-53, May 1999.

Sangyeun Cho received the BS degree in
computer engineering from Seoul National Uni-
versity, Seoul, Korea, in 1994. He earned the
MS degree in computer science from the
University of Minnesota in Minneapolis in 1996,
where he has been a PhD candidate since 1998.
Since 1999, he has been with Samsung Electro-
nics Company, where he is now a senior
engineer. He has designed several generations
of the CalImRISC@ processor core and their
caches. Prior to joining Samsung, he was a
summer intern at Intel Microcomputer Research Laboratory in 1998. His
current research interests are in low-power embedded processors and
their memory hierarchy design, as well as high-performance computer
architecture. He is a student member of the IEEE.

CHO ET AL.: A HIGH-BANDWIDTH MEMORY PIPELINE FOR WIDE ISSUE PROCESSORS 723

Pen-Chung Yew received the PhD degree in
computer science from the University of lllinois
at Urbana-Champaign in 1981. He is currently a
full professor and the head of the Department of
Computer Science and Engineering, University
of Minnesota. Previously, he was an associate
director of the Center for Supercomputing
Research and Development at the University of
lllinois. From 1991 to 1992, he served as the
program director of the Microelectronic Systems
Architecture Program in the Division of Microelectronic Information
Processing Systems at the National Science Foundation, Washington,
D.C. Pen-Chung Yew is a fellow of the IEEE and has served on the
program committee of various conferences. He also served as a cochair
of the 1990 International Conference on Parallel Processing, a general
cochair of the 1994 International Symposium on Computer Architecture,
and the program chair of the 1996 International Conference on
Supercomputing. He served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems from 1992 to 1996
and the Journal of Parallel and Distributed Computing from 1989 to
1995. His research interests include high-performance multiprocessor
system design, parallelizing compilers, computer architecture, and
performance evaluation.

Gyungho Lee received the PhD degree in
computer science from the University of lllinois
at Urbana-Champaign in 1986. He is currently a
professor of computer engineering at lowa State
University. His research and teaching interests
are in computer design and architecture, high-
performance computing, and computer security.
His industrial experiences include leading an
effort to develop a next generation microproces-
sor based on Compag’s Alpha 21264 at Sam-
sung Austin Design Center in 1997 and working as the principal architect
of a shared-bus symmetric multiprocessor SSM 7000 at Samsung
Electronics from 1990 to 1992. His academic research experiences
include participating as a research assistant in the Parafrase, a
parallelizing compiler project, and the Cedar, a shared-memory multi-
processor project at the University of lllinois at Urbana-Champaign from
1982 to 1986. From 1992 to 1996, he led the DICE project at the
University of Minnesota, which invented the bus-based cache-only
memory multiprocessor (US patent no. 5,692,149) and noninclusive
memory access mechanism (US patent no. 5,937,431). He was a
recipient of the 1986 Outstanding Paper Award from the 15th
International Conference on Parallel Processing, St. Charles, lllinois,
for his work on “combining switch.” He is a subject area editor for the
Journal of Parallel and Distributed Computing and is on the editorial
board for the Journal of Parallel Computing. He currently serves as a
distinguished visitor of the IEEE Computer Society and is a senior
member of the IEEE.

> For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

