
Access Region Locality for High-Bandwidth Processor Memory System Design

Sangyeun Cho, Pen-Chung Yewy, and Gyungho Leez

MCU Team, System LSI Division, Samsung Electronics Co., Yong-In, Korea
yDept. of Computer Sci. and Eng., University of Minnesota, Minneapolis, MN 55455-0159

zDept. of Electrical and Computer Eng., Iowa State University, Ames, IA 50011-3060

E-mail: sangyeun.cho@acm.org

Abstract

This paper studies an interesting yet less explored behavior of
memory access instructions, called access region locality. Unlike
the traditional temporal and spatial data locality that focuses on
individual memory locations and how accesses to the locations
are inter-related, the access region locality concerns with each
static memory instruction and its range of access locations at run
time. We consider program’s data, heap, and stack regions in this
paper. Our experimental study using a set of SPEC95 benchmark
programs shows that most memory reference instructions access
a single region at run time. Also shown is that it is possible to
accurately predict the access region of a memory instruction at
run time by scrutinizing the addressing mode of the instruction
and the past access region history of it. A simple run-time access
region predictor is developed that is similar to a branch predictor
in structure. We describe and evaluate a superscalar processor
with two distinct sets of memory pipelines, driven by the access
region predictor. Experimental results indicate that the proposed
mechanism is very effective in providing high memory bandwidth
to the processor, resulting in comparable or better performance
than a conventional memory design with a heavily multi-ported
data cache that can lead to much higher hardware complexity.

1 Introduction

Technological and architectural innovations have enabled de-
velopment of powerful microprocessors that can execute several
instructions concurrently at a very high clock rate [9, 30, 10].
These processors select and execute independent instructions at
run time, assisted by hardware mechanisms for control specula-
tion, register renaming, and data-flow execution [12]. With ample
on-chip hardware resources that will become available within a
few years, researchers are actively proposing even more aggressive
microarchitectures that can issue up to 16 or more instructions in
a single cycle [13, 19, 22]. To increase the exploitableinstruction
level parallelism(ILP) by better utilizing the available hardware

parallelism, various techniques to speculate on control [15, 31],
data values [14], and data dependences [16] are being pursued.

In a future wide-issue processor with aggressive control and
data speculation techniques, efficient handling of memory refer-
ences will become a more critical factor that affects the overall
performance. Cache memories [24] have been used in virtually all
recent microprocessors to shorten the average memory access la-
tency. Temporal and spatial localities are two important operating
principles for various cache memories. In addition to the memory
latency problem caused by the processor-memory speed gap, the
ability to provide enough memory bandwidth (or cache ports) to
the processor core is extremely important for a future wide-issue
processor to achieve its full performance potential [26, 20, 4]. For
example, for a processor to sustain ten instructions per cycle (IPC),
the memory subsystem should provide a minimum bandwidth of
four references per cycle, or more, to prevent excessive queuing
delays, assuming that about 40% of all instructions are loads and
stores [13].

This paper explores a very useful behavior of memory refer-
ence instructions for a high-bandwidth processor memory system
design, calledaccess region locality. The access region local-
ity states that a memory reference instruction typically accesses
a single region1 at run time and (thus) the region it accesses is
highly predictable. An important implication of the access re-
gion locality is that any two memory references known to access
non-overlapping regions are data independent. Figure 1 presents a
small code section to illustrate the access region of memory refer-
ence instructions.

Four (static) memory references of interest are highlighted:b[i]
in line 8,c[i] in line 9, *parm1 in line 10, anda in line 13. When
the functionfoo () is called,b[i] accesses the heap region andc[i]
accesses the data region, determined by whereb[] andc[] are allo-
cated (see line 6 and 1). The access region of*parm1 is unknown
from the given code segment. It can access any region at run time,
depending on the address passed from the call site of thefoo ()
function. Sincea is a local variable whose address is taken (in line

1An access regionR is defined as(L ,U), whereL is the lower bound
on the address of the accessed locations of a memory reference instruction
at run time andU is the upper bound. Program’s data, heap, and stack
segments are regions, for instance.

Figure 1. An example code segment that shows memory

references to different regions.

12), the reference toa becomes a stack access.

We show in Section 3 that memory reference instructions
which can access more than one region, such as*parm1, are few,
and their access regions are accurately predictable at run time us-
ing a simple predictor similar to the ones used for branch predic-
tion. Even without program’s high-level information,i.e., given
only the binary code, a simple one-bit predictor can classify the
memory references into stack and non-stack references with an
accuracy of well over 99% on average.

Based on the access region locality, we study a recently pro-
posed processor pipeline and memory system design calleddata-
decoupled architecture[4]. The data-decoupled architecture di-
vides the data memory stream into two data-independent streams
before their actual addresses are known, by using a prediction
mechanism (or compiler information). Partitioned memory ac-
cesses are then fed into a separate memory pipeline. This allows
the use of dual independent caches with fewer ports, each of which
is associated with a dedicated pool of reservation stations.

The data-decoupled approach to the memory system design
can have two crucial advantages over a conventional design when
used in a wide-issue superscalar processor. First, the cost and the
complexity of building a large cache with many ports is reduced.
Implementing a reasonably-sized data cache with more than two
ports becomes increasingly inefficient. That is, such a cache may
occupy significantly more chip area, and/or can have longer access
latency [20, 4]. More importantly, the network and the control
logic for orchestrating memory accesses between a large number
of reservation stations and cache ports become simpler. Such re-
duction in hardware complexity can lead to a shorter clock cycle
time [18]. Second, partitioning memory references can facilitate
more specialized handling of each partitioned stream. Fast for-
warding described in Section 4 is one such technique.

The rest of this paper is organized as follows. Section 2 sum-
marizes previous related work. Section 3 studies the access region
locality using some experimental data and develops a prediction
mechanism. Section 4 discusses the data-decoupled architecture
and gives evaluation results based on simulation. The conclusions
are summarized in Section 5.

2 Related Work

Recent uncovering of useful behaviors of memory access in-
structions has facilitated development of very interesting and ef-
fective processor memory subsystems. First of all, Lipastiet al.
showed that the values transferred from memory by load instruc-
tions present locality and are predictable [14]. They further de-
vised and evaluated confidence, prediction, and verification mech-
anisms to utilize thisload value localityin wide-issue pipelined
processors. Under their scheme, predicted load values are pro-
vided to the consuming instructions after being filtered by a con-
fidence mechanism, which then are executedspeculativelyon the
predicted values. When it is known at a later time that the previ-
ous prediction was wrong (by the verification mechanism), those
executed instructions that depend on the mispredicted value are
squashed and re-executed on the correct value. They reported mea-
surable (3 – 6% on average, depending on the machine model)
and in some cases dramatic (up to around 20%) speedups achiev-
able by the load value prediction mechanism on realistic proces-
sor models. The potential of more advanced context-based pre-
dictors was investigated by Sazeides and Smith [23]. Secondly,
it has been shown that the actual address of many memory in-
structions is highly predictable. Eickemeyer and Vassiliadis [7]
proposed a stride-based predictor to speculate on the address of
a load instruction, in order to hide the memory latency. Austin
and Sohi [2] and Lipastiet al. [14] also proposed and studied ad-
dress prediction schemes using operand-based predictors and last
address and strides, respectively. These techniques have poten-
tial to improve the dispatch-to-issue latency of load instructions
and overall performance. Lastly, dependences between store and
load instructions are shown to be predictable. In the most con-
servative form of static dependence prediction, load instructions
queued after a store instruction whose address is not known are all
considereddependenton the store. In an optimistic approach, the
load instructions whose addresses do not match the address of any
store before them (including unknown stores) in the queue are con-
sideredindependent[11, 10]. Moshovoset al. [16] and Chrysos
and Emer [5] showed that the actual dependences between store
and load instructions are accurately identifiable at run time. This
memory dependence predictability can be utilized to reduce the
misprediction penalty of the optimistic static prediction described
above, or to bypass the store data early to the dependent load(s) to
shorten the store-to-load latency [17, 28]. The above three types
of locality/predictability are, like the access region locality studied
in this paper, based on per-instruction run-time information. We
expect more studies on per-instruction memory access behaviors
to come and cooperate with other types of locality, including tra-
ditional temporal and spatial localities, to build more effective and
efficient memory systems.

Designing an effective multi-ported data cache has been a topic
of active research as aggressive multiple-issue processors emerge.
Sohi and Franklin [26] first predicted that the L1 cache bandwidth
will eventually become a performance bottleneck for a wide-issue
processor and proposed a non-blocking, multi-ported data cache
design with interleaved banks as a solution. Wilsonet al. [29] ar-
gued that adding more ports to the L1 cache can become costly
and/or inefficient in terms of space and time. As an alternative to
a dual-ported cache design found in some recent microprocessors,

Benchmark Input Inst. count (L/S, %)

099.go train 541M (22/8)
124.m88ksim ref 250M (14/8)

126.gcc stmt-protoize.i 220M (22/14)
129.compress train (100K) 293M (21/13)

130.li ctak.lsp 434M (28/19)
132.ijpeg penguin.ppm 621M (19/9)
134.perl scrabbl.pl 525M (26/15)

147.vortex train (1 iter.) 284M (29/22)
101.tomcatv test (N=253, 1 iter.) 549M (21/12)
102.swim test (3 iter.) 473M (22/8)
103.su2cor test 676M (23/10)
107.mgrid train (1 iter.) 684M (32/6)

Table 1. Input, dynamic instruction count, and percent-

age of dynamic load and store instructions in each

benchmark program. Percentage of load or store in-

structions is relative to the total instruction count.

they proposed augmenting a smallline buffer to a single-ported
data cache to effectively increase the port efficiency. Riverset
al. [20] also studied the impact of using a line buffer per bank in
a wide, interleaved cache. These studies have focused on increas-
ing the efficiency of cache ports by adding a small buffer, or un-
derstanding tradeoffs of various strategies in terms of the cost and
performance under specific processor models. The data-decoupled
architecture is largely orthogonal to multi-ported data cache design
techniques. Our approach focuses on relieving the hardware com-
plexity involved in the large instruction window, network, and data
cache by splitting the memory instructions early [4]. Especially,
this paper studies the program’s memory access behavior that al-
lows dynamic data decoupling using simple prediction techniques.

3 Access Region Locality

A program’s memory space is divided into a few regions or
segments: data, heap, and stack regions under a typical run-time
system [1].2 We study in this section how each memory reference
instruction accesses memory regions using a profiling tool and a
set of benchmark programs. We first study how each static mem-
ory instruction accesses regions at run time. Then we develop and
evaluate a run-time prediction mechanism. This section will serve
as a basis for the discussions in Section 4.

3.1 Methodology

We use a memory reference profiler derived from the Sim-
plescalar tool set [3] for the results reported in this section. In
each simulated cycle, it fetches and executes one instruction as
specified in the program. While doing so, it collects desired infor-
mation, i.e., which region(s) a memory reference instruction ac-
cesses. We use eight integer and four floating-point (FP) programs

2Program’s text region is yet another memory region. Accesses to the
text region are directed to a separate instruction cache in many recent pro-
cessors.

from the SPEC95 benchmark suite [27], whose characteristics are
summarized in Table 1.101.tomcatv, 102.swim, 103.su2cor, and
107.mgridare FP programs. All the programs were compiled us-
ing EGCS3 version 1.1b [8] at the -O3 optimization level with loop
unrolling. Eithertrain or test input is used in most cases, with
some data set modification to control the simulation time.

3.2 Per-reference memory access behavior

3.2.1 Access regions and access region locality

We analyze what region(s) each memory instruction accesses in a
program execution. Depending on the accessed region(s), instruc-
tions are classified into 7 different classes, as shown in Figure 2. It
is observed that majority of memory instructions, labeled “D” (ac-
cessing data region only), “H” (accessing heap region only), and
“S” (accessing stack region only) classes, reference a single region
at run time. Only an average of 1.8% and 1.9% of all thestatic in-
structions access more than one region in the integer and floating-
point programs studied, respectively. Although varied from one
program to another, these instructions account for 0% – 9.6% of all
thedynamicmemory references. Programs such as124.m88ksim,
134.perland101.tomcatvhave more instructions that access mul-
tiple regions than other programs.

The strong correspondence between memory instructions and
the memory regions they access is a natural consequence of how
programs are written. Most memory instructions access either a
fixed location (e.g., static variables and temporary local variables)
or a set of locations that belong to (instances of) a single data
structure, such as an array or C structure, that is allocated in a
pre-determined region. Therefore, even when it is difficult to pre-
dict the exact address of a memory reference, it is still feasible to
predict its access region, as will be shown in this section.

Integer programs except099.gohave a significant number of
heap-accessing instructions as they allocate many data structures
dynamically, while FP programs do not. It is interesting to note
that although each class varies much in its size, the sum of the “D”
and “H” classes remains roughly comparable across programs.

Over 50% of all the static memory instructions only access pro-
gram’s stack region at run time on average. These instructions are
for passing procedure parameters, spilling and reloading registers,
and storing local variables. The static and dynamic distribution
of the instructions from different classes will be determined by
the writing style of the programmer, the programming language
used, the underlying processor architecture, and how the compiler
generates memory reference instructions,e.g., during register al-
location, etc.

3.2.2 Interleaving of accesses to different regions

We address two important questions for the data-decoupled archi-
tecture to be effective [4]: (i) How many dynamic references in ap-
plication programs are directed to each access region, and (ii) How
accesses to different regions are interleaved. Answers to these
questions will provide a notable insight into how much memory

3EGCS is based on widely used GCC. It has a global CSE pass and
a global instruction scheduling pass additionally, assisted by an improved
alias analysis algorithm.

Figure 2. Breakdown of static memory instructions based on the region(s) they access at run time. “ D” stands for data region,

“ H” heap region, and “ S” stack region. “ D/S” denotes the instructions that access both the data and the stack regions when

the program is executed.

bandwidth (or how many cache ports) is required by the memory
accesses toward each region. Such information is also useful in
estimating the performance impact when separate cache ports are
provided for a certain memory region.

To answer the questions, we counted the number of memory
references in the last 32 or 64 instructions executed (in 32 or 64-
wide “sliding instruction window”) every cycle. After construct-
ing the distribution of the collected numbers (per region), we draw
from it two major metrics used in this section: (i) the average num-
ber of memory accesses in the window and (ii) the standard devi-
ation of them. The standard deviation shows the “bursty-ness”
a group of memory references exhibit; the higher it is, the more
bursty the memory references are. The standard deviation be-
comes large when the occurrences of memory accesses are clus-
tered. Table 2 reports the results.

Three observations are made. First, either data or stack ac-
cesses consume more memory bandwidth than the other two types
of accesses in all the programs studied. There are six programs
(099.go, 124.m88ksim, 129.compress, 102.swim, 103.su2cor, and
107.mgrid) that have more data accesses than heap or stack ac-
cesses. The other six programs have more stack references
than data or heap references. All the programs except one
(124.m88ksim) have fewer heap references than stack references.

Second, comparing the average number of accesses and the
standard deviation, accesses to the data region are less bursty than
accesses to the heap or stack region. Data accesses arestrictly
bursty4 in only two programs (126.gccand132.ijpeg) while heap
accesses are strictly bursty in 8 programs and stack accesses in 6
programs when the window size is 32. When the window size is
64, however, only 3 programs (099.go, 132.ijpeg, and103.su2cor)

4In this paper, accesses to a region are consideredstrictly burstyif the
average number of accesses in the given instruction window is smaller than
the standard deviation.132.ijpeg’s data, heap, and stack accesses are all
strictly bursty, for instance.

have bursty stack accesses.
Third, as pointed out earlier, there are few heap accesses in

floating-point programs. In programs that have many heap ac-
cesses, such as130.li, 132.ijpeg, and134.perl, there are relatively
fewer data accesses, suggesting that these programs distribute their
data structures and the related accesses among the data and the
heap regions as necessary. Furthermore, it is shown that heap ac-
cesses are quite bursty even when the window size is 64. This im-
plies that processing heap accesses separately will not generally
bring much benefit, especially for the floating-point programs.

From the above observations, it is concluded that most pro-
grams have a constant memory bandwidth demand for data and
stack accesses, especially when the processor buffers many in-
structions to search for independent instructions to achieve higher
performance.

3.3 A case for decoupling stack accesses

The previous subsection suggests that if an extra cache for
stack references is provided, the data cache bandwidth can be
saved significantly for many programs, effectively offering more
data bandwidth. Heap access distribution showed irregular shapes
among different programs and in different phases in a single pro-
gram. Therefore, if one wishes to partition the set of memory
access instructions into two groups that access distinct memory
regions, the stack-accessing instructions are a good candidate to
decouple from others. The remainder of this paper focuses on ser-
vicing stack and non-stack references separately with two exclu-
sive caches. The details of the architectural change and the effects
will be discussed in Section 4.

In addition to the above observations, there are also other prac-
tical considerations that favor separate handling of stack accesses.
It has been shown previously that stack accesses show a very high
degree of data locality and a separate cache for stack need not be

Window Size= 32 Window Size= 64
Benchmark Data Heap Stack Data Heap Stack

099.go 6.11 (2.71) 0.00 (0.00) 3.61 (4.62) 12.23 (4.37) 0.00 (0.00) 7.23 (7.83)
124.m88ksim 2.91 (2.45) 2.14 (3.69) 1.90 (2.20) 5.82 (2.18) 4.29 (7.21) 3.81 (3.35)

126.gcc 3.48 (4.23) 1.69 (2.36) 6.45 (5.13) 6.96 (7.97) 3.38 (4.09) 12.91 (8.54)
129.compress 9.94 (3.70) 0.00 (0.02) 1.08 (1.50) 19.86 (6.42) 0.00 (0.01) 2.15 (2.05)

130.li 2.70 (1.94) 5.24 (3.77) 7.09 (4.64) 5.40 (3.21) 10.48 (6.25) 14.17 (7.44)
132.ijpeg 1.41 (2.22) 3.45 (3.72) 4.10 (4.94) 2.82 (4.33) 6.90 (6.95) 8.20 (8.80)
134.perl 2.06 (2.01) 4.79 (2.91) 6.29 (5.42) 4.11 (3.01) 9.59 (4.34) 12.58 (8.92)

147.vortex 1.92 (1.42) 2.80 (3.74) 11.81 (5.06) 3.84 (2.10) 5.60 (6.63) 23.63 (7.88)
101.tomcatv 3.96 (3.33) 0.63 (1.38) 5.97 (5.83) 7.93 (5.72) 1.26 (2.47) 11.92 (10.05)
102.swim 6.06 (5.09) 0.00 (0.00) 3.35 (4.45) 12.11 (8.18) 0.00 (0.00) 6.69 (6.58)
103.su2cor 7.38 (4.81) 0.44 (1.19) 2.98 (4.53) 14.76 (8.72) 0.88 (2.12) 5.98 (8.29)
107.mgrid 9.57 (2.98) 0.00 (0.02) 2.58 (1.75) 19.15 (4.41) 0.00 (0.04) 5.17 (3.00)

Average 4.79 (3.27) 1.77 (2.48) 4.77 (4.41) 9.58 (5.52) 3.54 (4.37) 9.54 (7.34)

Table 2. Average number of data, heap, and stack accesses in the last 32 and 64 instructions. Standard deviation of the

distribution is shown in the parenthesis.

large to attain a high hit rate [6, 4]. A 4-KB stack cache achieved
over 99.5% hit rate for the SPEC95 benchmark programs, with an
average of about 99.9% [4].

3.4 Predicting access regions

3.4.1 Dynamic access region prediction strategies

Memory instructions can be categorized into three classes: ones
that always access the stack (“S” in Figure 2), ones that always
access non-stack regions (“D”, “H”, or “D/H”), and ones that can
access both the stack and non-stack regions. The goal of the dis-
cussions in this section is to develop an efficient mechanism to
accurately predict which region (stack or non-stack) an instruction
will access at run time, given the program counter (PC) of it. We
use a hardware table calledaccess region prediction table(ARPT),
similar tobranch prediction table, and a set of heuristics for higher
prediction accuracy. The prediction result, available as early as at
the fetch stage, is used to guide the instruction dispatcher for data
decoupling as discussed in Section 4. A schematic figure to illus-
trate how the ARPT is operated is given in Figure 3.

Note that it is already shown that most instructions access only
a single region during program execution in Figure 2. Therefore, if
a single bit is allocated for each static memory instruction to store
the previously accessed region,e.g., using ‘1’ to indicate stack and
‘0’ to indicate non-stack, the access region of most instructions
can be accurately predicted from next time by just looking up their
history bit. This is called thesimple one-bit schemein this paper.
Alternatively, we can use two bits per instruction to add hysteresis
or inertia to prediction (simple two-bit scheme).

There are two issues in obtaining good prediction accuracy
given the above base predictors. First, when a memory instruc-
tion is first executed,i.e., the history of the instruction is not avail-
able, how do we predict the access region of it?5 The second issue

5Because we don’t use a tag or valid bit in the ARPT, this is similar to

Figure 3. Operation of the ARPT with 1-bit entries. (Log

N)-bits from PC (optionally XOR’ed with context bits) is

used to index an N-entry ARPT.

is how we can effectively handle a memory instruction that ac-
cesses the stack (‘S’) and non-stack (‘N’) regions irregularly,e.g.,
“SNSNSNNNSN”.

To cover the above first issue, we note that the addressing mode
of many memory instructions immediately reveals the regions that
will be accessed. We use the following baseline heuristics in our
study:6

(Static Prediction):
1. If the addressing mode is constant, the instruction will access

a non-stack region.
2. If $sp (stack pointer) or $fp (frame pointer) is used for in-

dexing, the instruction will access the stack region.
3. If $gp (global pointer) is used for indexing, the instruction

will access a non-stack region.

“how do we initialize the content of the ARPT entries?”
6This is based on Simplescalar’sPortable ISA(PISA) [3]. However,

the discussions can be easily extended to other ISAs.

Figure 4. Percentage of dynamic memory instructions that are correctly classified into stack and non-stack regions using

various schemes. Bars for each benchmark program denote from left the static classification, the simple 1-bit scheme, the

1-bit scheme w/ GBH context, the 1-bit scheme w/ CID , and the 1-bit scheme w/ hybrid context (8-bit GBH and 24-bit CID).

4. For other cases,i.e., instructions with an index register other
than $sp, $fp, or $gp,predict that a non-stack region will be
accessed.

The addressing mode information can be obtained early from
the pre-decoding logic or the decoding stage at the latest. In any
case, the information from the ARPT at the fetch stage will be
discarded by the instruction dispatcher if the information from the
(pre-)decoder is considered more accurate. Figure 4 shows that
many instructions, over 50% on average, manifest their access re-
gions in their addressing mode (lower dark bars). In order to save
space in the ARPT, these instructions are not recorded. It is noted
that a compiler has more knowledge of the access region of mem-
ory instructions than is disclosed in the addressing mode of them.
The impact of transporting compiler information to the hardware
will be studied in Section 3.5.2.

Next, we use an ARPT index function with additional run-time
information to tackle the second issue. Figure 3 shows how the
ARPT is indexed with the PC of the memory reference instruc-
tion XOR’ed with a string of bits, labeled “run-time context.” We
consider two types of run-time context in our work:global branch
history (GBH) andcaller’s identification(CID). Modern branch
predictors already use the GBH to index the branch prediction ta-
ble [15]. The path through which the control reaches a memory in-
struction, like in a branch predictor, may help predict the behavior
of the memory instruction. Considering which procedure called
the current procedure gives a valuable insight into which region
a pointered reference will access (such as*parm1 in Figure 1),
because it is likely that the calling procedure passes to the called
procedure the same set of arguments, or at least the arguments of
the same types repeatedly. Thelink registerusually keeps the next
PC of the call instruction (that resides in the calling procedure) and
thus can be used as a unique CID. It is also possible to combine
these two types of information by concatenating a certain number
of bits from the GBH and also from the CID to form a value to be
used as context bits.

We evaluated the following five different schemes with an un-
limited ARPT: the baseline static classification (STATIC), sim-

ple 1-bit scheme (1BIT), 1-bit with GBH (1BIT-GBH), 1-bit with
CID (1BIT-CID), and 1-bit with both the GBH and CID (1BIT-
HYBRID). When GBH and CID are used together, we use lower 8
bits from the GBH and lower 24 bits from the CID concatenated
together to form a 32-bit context.7 Figure 4 shows the results;
overall, 1BIT-HYBRID performed the best in terms of prediction
rate (99.89% and 100% for the integer and floating-point programs
respectively).8

The 1BIT scheme outperformed 1BIT-GBH and 1BIT-CID.
This is because adding some run-time context in the indexing func-
tion increases the number of entries in ARPT (as shown in Ta-
ble 3) and causes unnecessary cold misses for certain memory in-
structions that don’t need any run-time context, but still can be
reached via a number of different procedures or control flows.
These misses offset the benefit of using the context bits and in
many cases lead to lower overall prediction rate unless the ob-
tained benefit is large enough.147.vortexand103.su2corare the
examples where 1BIT is a clear winner over 1BIT-CID. Notice,
however, that indexing with either run-time context can lead to
better performance than 1BIT, as is observed in107.mgrid.

3.5 Performance of the access region prediction
table (ARPT)

3.5.1 ARPT of limited size

We study the impact of the ARPT size on the prediction rate. Fig-
ure 5 (lower light bars) shows the performance of 1BIT-HYBRID

when the ARPT size is varied from 64K to 8K entries. In general,
the ARPT loses the prediction accuracy when its size becomes
smaller. Certain programs, such as099.go, 126.gcc, 147.vortex,
and101.tomcatv, are more sensitive to the ARPT size than others.
Table 3 indicates that these programs require significantly more

7Experiments revealed that this combination provides reasonable per-
formance across programs.

8We omit presenting the performance of 2-bit schemes because their
performance is consistently lower than that of 1-bit schemes.

Bench. STATIC w/ GBH w/ CID w/ HYBRID

099 7896 9733 (23%) 13465 (71%) 34421 (336%)

124 1227 1319 (7%) 1326 (8%) 2093 (71%)

126 10521 11484 (9%) 15949 (52%) 30517 (190%)

129 556 590 (6%) 573 (3%) 765 (38%)

130 822 862 (5%) 973 (18%) 1467 (78%)

132 3137 3467 (11%) 2681 (-15%) 5002 (59%)

134 2140 2255 (5%) 2874 (34%) 4229 (98%)

147 6836 7094 (4%) 5833 (-15%) 12200 (78%)

101 877 954 (9%) 1033 (18%) 1430 (63%)

102 958 1062 (11%) 1072 (12%) 1520 (59%)

103 1760 2220 (26%) 3214 (83%) 5887 (234%)

107 1095 1322 (21%) 1519 (39%) 2620 (139%)

Table 3. Number of entries occupied in an unlimited

ARPT, when used with different context bits for index-

ing. Increase in number compared to “Static Prediction”

is shown in parenthesis.

entries than other programs when a type of run-time context is
used (except101.tomcatv), putting a high pressure on the ARPT
size. In the case of101.tomcatv, it seems that there are negative
interferences in the ARPT. This is indirectly supported by the fact
that the availability of compiler information removes any deficien-
cies caused by the limited ARPT size. It is interesting to observe
that a limited ARPT performs better than an unlimited ARPT in
the case of126.gcc. This means that there are positive interfer-
ences between different memory instructions that map to a single
ARPT entry.

To summarize, a 32K-entry ARPT achieved over 99.9% pre-
diction accuracy for both the integer and floating-point programs
studied. The necessary hardware resources for implementing a
32K-entry ARPT is modest – only 4 KB of space.

3.5.2 Effects of compiler hints

A compiler often has knowledge of which region a memory in-
struction will access at run time. For example,b[i] and c[i] in
Figure 1 are easily identifiable as heap and data references. Most
stack accesses are accurately identifiable when the compiler comes
across variable declarations, handles a procedure call, or performs
register allocation and reloading. For non-stack accesses, the type
and storage information of a variable symbol provides necessary
information. A simple compiler algorithm to determine the access
region of a memory instruction is shown in Figure 6.

This section studies the effects of augmenting each static mem-
ory instruction with a tag that indicates if it is a stack access, a
non-stack access, or that the compiler can not distinguish (such as
*parm1 in Figure 1). For the experiments, we used profiled region
information gathered from program runs instead of implementing
the compiler algorithm and performing static analysis. The ac-
cessed region(s) of each instruction is saved in the profile data,
and we assumed that an instruction can be classified by a compiler
if it is shown to access only a single region during program exe-
cution. Therefore, the quality of the compiler information used in
this section should be interpreted as one that is from very accurate

Figure 6. A simple compiler algorithm to classify the ac-

cess region of a memory instruction.

compiler analysis (i.e., upper bound). Although a real compiler
will produce more unknown cases, the quality of the information
will be close to the profile information in general, because mem-
ory references in many real programs are easy to analyze based on
our past experiences.

The compiler information helps to improve the performance of
the ARPT in two ways. First, the resultant prediction rate becomes
higher because many instructions have been taken care of by the
compiler and bypass the prediction mechanism. Second, the space
of the ARPT is saved since many correctly tagged instructions do
not need to occupy the entries in the ARPT. This will decrease
the effects of negative interferences and allow us to use a smaller
ARPT to achieve a given prediction rate. In other words, compiler
hints will reduce the pressure on the ARPT size, especially when a
lot of entries are needed (i.e., when a type of context bits is used).

Figure 5 (upper dark portions) shows that in the presence of
compiler information (i) the prediction accuracy is higher, and (ii)
the performance of the ARPT becomes less sensitive to its size.
101.tomcatvbenefits greatly from the compiler information when
the ARPT has less than 32K entries. It is shown also, however,
that the performance without compiler information is already high
when the ARPT has 32K entries or more; Therefore, we con-
clude that although compiler information is useful, the hardware
mechanism proposed in this paper is accurate enough for effec-
tive data decoupling as will be shown in the next section. Use of
the dynamic technique allows running existing binaries on a data-
decoupled processor without losing noticeable performance.

Figure 5. Prediction rate achieved by 1BIT-HYBRID when the ARPT size is varied. Results for the ARPT of unlimited size,

64K, 32K, 16K, and 8K entries are shown from left. The dark, upper portion of each bar denotes potential performance

improvement when compiler information is available.

4 Data-Decoupling for a Wide-Issue Super-
scalar Processor

4.1 Motivation

As processors seek aggressively to widen the issue bandwidth,
the complexity of several key hardware components of such pro-
cessors become severe bottlenecks that hinder further scaling of
the processor and shrinking the clock cycle time [18]. Especially
the window logic to wake up and issue the ready instructions to the
functional units has been pointed out to be one of the most critical
hardware components that needs immediate work-arounds.

In our previous work [4], we proposed partitioning the in-
struction window for memory into two separate windows, each
of which feeds a separate data cache. The approach, calleddata
decoupling, can ease the hardware complexity of the network and
window logic required for high bandwidth memory system. Be-
cause the delay of the window logic is proportional to the square
of the instruction window size and the square of the issue band-
width [18], this partitioning can become a crucial advantage. As
such, the data-decoupled architecture employs two separate mem-
ory instruction windows, aLoad Store Queue(LSQ) and aLo-
cal Variable Access Queue(LVAQ). An ordinary data cache and
a small stack cache calledLocal Variable Cache(LVC) are con-
nected to LSQ and LVAQ, respectively. For other detailed archi-
tectural issues and implications readers are referred to [4].

4.2 Pipeline design

We briefly describe the pipeline stages of a data-decoupled pro-
cessor equipped with an ARPT.

� Fetch stage. The ARPT is accessed with the current PC
XOR’ed with the run-time context bits. The single bit value
returned from the ARPT is passed to the dispatch (decode)

stage. Note that this way of accessing the ARPT is a base-
line design and that other ways of implementing the ARPT
access mechanism are possible. For example, memory in-
structions in the trace cache [21] lines can be tagged with
the ARPT bits to relieve the high bandwidth requirements on
the ARPT. A part of ARPT accesses can be deferred to the
decode stage also.

� Dispatch (Decode) stage.If the decoded instruction is a
memory instruction, check if the addressing mode shows the
access region of the instruction. If so, do not consider the
ARPT bit from the Fetch stage; However, if the addressing
mode does not give any hint, use the ARPT bit for decid-
ing which of the two instruction queues, LSQ or LVAQ, the
instruction is steered into.

� Memory access stage.The address of a ready memory in-
struction in LSQ or LVAQ is calculated in the first memory
stage. Once it is known that the instruction is properly clas-
sified and placed in the right queue, the instruction will ac-
cess the data cache or the local variable cache in the second
memory stage. This access region checking is done when
the address is translated in theTranslation Look-aside Buffer
(TLB). Each TLB entry is extended with a single bit indi-
cating whether the translated page belongs to the stack or
not. Storing such information can be done accurately and
efficiently when a page is allocated by the run-time system.
When the predicted region is determined wrong at this stage,
the recovery action – be it squashing the instructions or se-
lectively re-issuing the affected instructions – is initiated. At
the same time, the ARPT is updated with correct region in-
formation of the memory instruction. Because the verifica-
tion process will eventually prevent any wrongly classified
memory instruction from accessing a wrong cache, the co-
herence in the current dual cache scheme will be guaranteed.
At this stage, store-to-load data forwarding is performed in
LSQ and LVAQ. In LVAQ, data dependence between a pair

Figure 7. An example processor pipeline augmented with

the ARPT and a separate memory pipeline for stack and

non-stack references each.

of store and load instructions in the same function frame can
be resolved quickly by looking at their offset (calledfast for-
warding [4]).

4.3 Methodology and architecture model

We use a detailed timing simulator based on the Simplescalar
tool set [3]. The machine model used in the timing simulator sup-
ports out-of-order issue and execution, based on theRegister Up-
date Unit (RUU) [25]. The RUU scheme uses a reorder buffer
(ROB) to automatically perform register renaming and hold the
results of pending instructions. In each cycle, the ROB retires
completed instructions in program order to the architected register
file. The processor pipeline consists of six stages: fetch, dispatch
(decode and register renaming), issue, execution, write-back, and
commit. Depending on the instruction type, more than a cycle can
be taken in the execution stage.

The processor’s memory system employs aLoad Store Queue
(LSQ). Store values are placed in the queue if the store is specu-
lative. Loads are dispatched to the memory system when the ad-
dresses of all previous stores are known. Loads may be satisfied
either by the memory system or by an earlier store value residing
in the queue. In the latter case, the store-to-load forwarding delay
is one cycle.

We use an aggressive processor model that can issue up to 16
instructions per cycle. The model represents a future wide-issue
processor with aggressive issue bandwidth from a large instruction
window. The ROB has 256 entries and the LSQ has 128 entries,
which are derived from the MIPS R10000 implementation [30].
The ROB and the LSQ effectively form the instruction window
of the processor. The primary on-chip data cache that is 64 KB
and 2-way set-associative has a 2-cycle hit time (unless otherwise
stated), as in some of the recent machines [30, 10]. The 512 KB
L2 cache, either on-chip or off-chip, has a 12-cycle hit latency.
Both the caches are lock-up free.

BASE MACHINE MODEL

Issue width 16
No. of regs. 32 GPRs/32 FPRs

ROB/LSQ size 256/128
Func. units 16 integer+ 16 FP ALUs,

4 integer+ 4 FP MULT/DIV units.
Value pred. Stride-based predictor for register values.

16K-entry table.
L1 D-cache 2-way set-assoc. 64 KB. 2-cycle hit time.
L2 D-cache 4-way. 512 KB. 12-cycle access time.

Memory 50-cycle access time. Fully interleaved.
LV Cache Direct-mapped. 4 KB. 1-cycle access time.

ARPT 32K 1-bit entries.
I-cache Perfect I-cache with a 1-cycle latency.

Branch pred. Perfect.
Inst. latencies Same as those of MIPS R10000 [30].

Table 4. The base machine model. Decode and commit

widths are same as the issue width.

We implemented a stride-based value predictor for the register
values, as the performance improvement achieved by value pre-
diction techniques is mainly from the register data flow [13]. The
value prediction table has 16K entries in our processor model.

We use an aggressive front-end with a perfect instruction cache
and a perfect branch prediction, to assert the maximum pressure
on the data memory bandwidth. This setting is necessary to accu-
rately study the impact of the proposed techniques by eliminating
other factors that affect the measured performance. Due to this, we
only report relative performance in the result section rather than
direct IPC numbers. Important parameters of the base machine
model are summarized in Table 4.

For data decoupling, the direct-mapped 1-cycle LVC is sized to
4 KB. The ARPT has 32K 1-bit entries with no tags or valid bits
(4 KB table size). For ARPT indexing, the 15 bits of PC (above
least-significant zeros due to a large instruction size) XOR’ed with
context bits composed of 8 bits from global history and 7 bits from
link register. The LSQ/LVAQ size was set to 96/96 entries each.
On ARPT mispredictions, as on a branch misprediction, the in-
structions from the mispredicted memory instruction in the pro-
gram order should be squashed and re-issued. Alternatively, only
the affected instructions can be selectively re-issued with more so-
phisticated hardware support [13]. This paper assumes that only
the dependent instructions begin to re-issue 1 cycle after the mis-
prediction is detected.

4.4 Performance

Figure 8 shows the performance of various configurations rel-
ative to that of the (2+0) configuration.9 The results show that the
baseline configuration with a 2-ported data cache does not pro-
vide enough bandwidth: The (16+0) configuration (i.e., unlimited

9An (N+M) configuration has N-port data cache and M-port LVC.
When M = 0, the configuration is a conventional memory design with
an N-port data cache.

Figure 8. Performance of various configurations, compared with that of the baseline (2+0) model. The (16+0) configuration on

the rightmost side is shown as an upper bound (unlimited bandwidth).

bandwidth) improves the performance by 33% (integer) and 25%
(floating-point) on average, indicating that there is large room for
performance improvement when more data bandwidth is provided
beyond 2 ports. For147.vortexthe improvement was as high as
80%. It is also worthwhile to note that our experiments showed
that the (2+0) configuration with a 128 KB data cache produces
little performance improvement over the same configuration with
a 64 KB data cache (by less than 1%).

Two (3+0) configurations with a 2- and 3-cycle latency
achieved 21% and 18% improvement for the integer programs re-
spectively and 14% for the floating-point programs. This shows
that when the processor performance is limited by the data band-
width, the impact of access latency becomes smaller, especially in
a dynamically scheduled processor like our baseline model. Only
099.goshows a sharp performance drop as a 3-cycle latency is
used for cache access. Floating-point programs were hardly af-
fected with the latency change, implying that the latency was ef-
fectively hidden by out-of-order execution. Having a 4-ported data
cache, represented by the (4+0) configuration, improves the per-
formance by 25% (integer) and 20% (floating-point). Considering
that adding more ports beyond four gives diminishing returns, this
configuration might become the choice for a conventional design.
However, the hardware complexity caused by the large 128-entry
LSQ and the cache can become excessive; We have accordingly
set the cache access time to be 3 cycles for the configuration, not
to increase the clock cycle time.

Comparing the (2+2) and (4+0) configurations, they achieved
similar performance for integer programs, but the (4+0) config-
uration performed better for the floating-point programs. Under
the (2+2) configuration, floating-point programs showed limited
performance mainly because they have more bandwidth demand
for data region than stack. Therefore, attaching one more port to
the LVC, the (2+3) configuration, doesn’t help improve the per-
formance of these programs at all. On the other hand, certain in-
teger programs, like126.gccand 147.vortex, obtains additional
speedups.

The (3+3) configuration performs well for both the integer and

floating-point programs. For the integer programs, this configura-
tion was as good as the (16+0) configuration on average, which is
the limit case for our study. For the floating-point programs, the
(3+3) configuration was close to the (4+0) configuration. In sum-
mary, when it is not feasible to build a single many-ported data
cache attached to a large instruction window, a data-decoupled
configuration, such as (3+3), can become a viable alternative that
achieves a similar performance level. The configuration choice
should be made, however, after thoroughly investigating the cost
of implementing a particular multi-ported data cache and related
hardware complexity, as the studied models in this paper assume
perfect multi-porting.

5 Concluding Remarks

This paper studied an important behavior of memory access
instructions, called the access region locality and how it is used to
predict the region of memory accesses. Utilizing the access region
locality, we showed the effectiveness of the data decoupling as
a way of increasing on-chip data memory bandwidth. Following
contributions are made in the paper:

� The notion of access region locality is introduced. Also given
is a set of detailed profile data, showing that most memory
reference instructions access only a single region at run time.

� Techniques to predict the access region of a memory instruc-
tion before the actual effective address is calculated are de-
veloped and evaluated. Results show that the proposed pre-
diction mechanism with reasonable hardware resources can
precisely determine the access region of an instruction (to be
either stack or non-stack) with an accuracy of over 99.9% on
average.

� Using a detailed cycle-by-cycle simulator, a performance
study of a superscalar processor with the proposed predic-
tion mechanism under the data decoupling model is given.
Results show that the data-decoupled architecture with the
proposed hardware prediction mechanism provides adequate

data bandwidth to a wide-issue processor, confirming the re-
sults of our previous work [4].

Finally, it is important to note that the hardware-based mem-
ory access region predictor proposed in this work allows us to
run existing binaries on a data-decoupled processor without any
modification. As a future work, we will study in detail the hard-
ware complexity of the proposed prediction mechanism and the
data-decoupled memory pipeline in terms of area and cycle time.
It will be also interesting to study the memory access behaviors
of the programs written in C++ or Java, used extensively in the
newest applications in many areas of computing.

Acknowledgment

This work was supported in part by the National Science Foundation
under grant nos. MIP-9610379 and CDA-9502979; by the U.S. Army In-
telligence Center and Fort Huachuca under contract DABT63-95-C-0127
and ARPA order no. D346, and a gift from the Intel Corporation. The
views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the U.S. Army Intelligence
Center and Fort Huachuca, or the U.S. Government. We thank Todd Austin
and Doug Burger for developing the Simplescalar tool set that has been
indispensable for our study. Anonymous referees provided many con-
structive comments that greatly helped improve the quality of this paper.
Sangyeun Cho was supported in part by a doctoral fellowship from the
Korea Foundation for Advanced Studies (KFAS). Gyungho Lee was sup-
ported in part by DoD/Air Force grant F49620-96-1-0472.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, 1986.

[2] T. M. Austin and G. S. Sohi. “Zero-Cycle Loads: Microarchitecture
Support for Reducing Load Latency,”Proc. of the 28th Annual Int’l
Symp. on Microarch., pp. 82 – 92, Nov. 1995.

[3] D. Burger and T. M. Austin. “The SimpleScalar Tool Set, Version
2.0,” Computer Sciences Department Technical Report, No. 1342,
Univ. of Wisconsin, June 1997.

[4] S. Cho, P.-C. Yew, and G. Lee. “Decoupling Local Variable Accesses
in a Wide-Issue Superscalar Processor,”Proc. of the 26th Int’l Symp.
on Computer Arch., pp. 100 – 110, May 1999.

[5] G. Chrysos and J. Emer. “Memory Dependence Prediction Using
Store Sets,”Proc. of the 25th Int’l Symp. on Computer Arch., pp. 142
– 153, July 1998.

[6] D. Ditzel and R. McLellan. “Register Allocation for Free: The C
Machine Stack Cache,”Proc. of the Symp. on Architectural Support
for Prog. Lang. and Operating Systems, pp. 48 – 56, March 1982.

[7] R. J. Eickemeyer and S. Vassiliadis. “A Load-Instruction Unit for
Pipelined Processors,”IBM J. of Research and Development, 1993.

[8] EGCS Project.http://egcs.cygnus.com .

[9] L. Gwennap. “Intel’s P6 Uses Decoupled Superscalar Design,”Mi-
croprocessor Report, Vol. 9, No. 2, Feb. 1995.

[10] L. Gwennap. “Digital 21264 Sets New Standard,”Microprocessor
Report, Volume 10, Issue 14, Oct. 1996.

[11] D. Hunt. “Advanced Performance Features of the 64-bit PA-8000,”
Proc. of the COMPCON, pp. 123 – 128, 1995.

[12] M. Johnson. Superscalar Microprocessor Design, Prentice Hall,
1991.

[13] M. H. Lipasti and J. P. Shen. “Superspeculative Microarchitecture
for Beyond AD 2000,”IEEE Computer, pp. 59 – 66, Sept. 1997.

[14] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. “Value Locality and
Load Value Prediction,”Proc. of the 7th Int’l Symp. on Architectural
Support for Programming Languages and Operating Systems, pp.
138 – 147, Oct. 1996.

[15] S. McFarling. “Combining Branch Predictors,” WRL Technical Note
TN-36, Digital Equipment Corp., June 1993.

[16] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. “Dy-
namic Speculation and Synchronization of Data Dependences,”Proc.
of the 24th Int’l Symp. on Computer Arch., pp. 181 – 193, June 1997.

[17] A. Moshovos and G. S. Sohi. “Streamlining Inter-operation Memory
Communication via Data Dependence Prediction,”Proc. of the 30th
Annual Int’l Symp. on Microarch., pp. 235 – 245, Dec. 1997.

[18] S. Parlacharla, N. P. Jouppi, and J. E. Smith. “Complexity-Effective
Superscalar Processors,”Proc. of the 24th Int’l Symp. on Computer
Arch., pp. 206 – 218, June 1997.

[19] Y. N. Patt, S. J. Patel, D. H. Friendly, and J. Stark. “One Billion
Transistors, One Uniprocessor, One Chip,”IEEE Computer, pp. 51 –
57, Sept. 1997.

[20] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. “On
High-Bandwidth Data Cache Design for Multi-Issue Processors,”
Proc. of the 30th Annual Int’l Symp. on Microarch., pp. 46 – 56,
Dec. 1997.

[21] E. Rotenberg, S. Bennet, and J. E. Smith. “Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching,”Proc. of
the 29th Annual Int’l Symp. on Microarch., pp. 24 – 34, Dec. 1996.

[22] E. Rotenberg, Q. Jacobson, and J. E. Smith. “Trace Processors,”
Proc. of the 30th Annual Int’l Symp. on Microarch., pp. 138 – 148,
Dec. 1997.

[23] Y. Sazeides and J. E. Smith. “The Predictability of Data Values,”
Proc. of the 30th Annual Int’l Symp. on Microarch., pp. 248 – 258,
Dec. 1997.

[24] A. J. Smith. “Cache Memories,”Computing Surveys14:3, pp. 473 –
530, Sept. 1982.

[25] G. S. Sohi. “Instruction Issue Logic for High-Performance, Interrupt-
ible, Multiple Functional Unit, Pipelined Computers,”IEEE Trans.
on Computers, 39(3):349 – 359, March 1990.

[26] G. S. Sohi and M. Franklin. “High-Bandwidth Data Memory Sys-
tems for Superscalar Processors,”Proc. of the Fourth Int’l Conf.
on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 53 – 62, April 1991.

[27] The Standard Performance Evaluation Corporation,
http://www.specbench.org .

[28] G. Tyson and T. M. Austin. “Improving the Accuracy and Perfor-
mance of Memory Communication Through Renaming,”Proc. of the
30th Annual Int’l Symp. on Microarch., pp. 218 – 227, Dec. 1997.

[29] K. M. Wilson, K. Olukotun, and M. Rosenblum. “Increasing Cache
Port Efficiency for Dynamic Superscalar Microprocessors,”Proc. of
the 23th Int’l Symp. on Computer Arch., pp. 147 – 157, May 1996.

[30] K. C. Yeager. “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, Volume 16, Number 2, pp. 28 – 40, April 1996.

[31] T.-Y. Yeh, D. T. Marr, and Y. N. Patt. “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch Address
Cache,” Proc. of the 7th Int’l Conf. on Supercomputing, pp. 67 –
76, July 1993.

