
Decoupling Local Variable Accesses
in a Wide-Issue Superscalar Processor

Sangyeun Cho, Pen-Chung Yewy, and Gyungho Leez

MCU Team, System LSI Div. yDept. of Comp. Sci. and Eng. zDivision of Engineering
Samsung Electronics Co. University of Minnesota Univ. of Texas at San Antonio

Yongin-City, Korea Minneapolis, MN 55455 San Antonio, TX 78249

E-mail: sangyeun.cho@acm.org

Abstract

Providing adequate data bandwidth is extremely important for
a wide-issue superscalar processor to achieve its full performance
potential. Adding a large number of ports to a data cache, how-
ever, becomes increasingly inefficient and can add to the hardware
complexity significantly. This paper takes an alternative or com-
plementary approach for providing more data bandwidth, called
the data-decoupled architecture. The approach, with support from
the compiler and/or hardware, partitions the memory stream into
two independent streams early in the processor pipeline, and feeds
each stream to a separate memory access queue and cache. Under
this model, the paper studies the potential of decoupling memory
accesses to program’s local variables that are allocated on the
run-time stack. Using a set of integer and floating-point programs
from the SPEC95 benchmark suite, it is shown that local vari-
able accesses constitute a large portion of all the memory refer-
ences, while their reference space is very small, averaging around
7 words per (static) procedure. To service local variable accesses
quickly, two optimizations, fast data forwarding and access com-
bining, are proposed and studied. Some of the important design
parameters, such as the cache size, the number of cache ports, and
the degree of access combining, are studied based on simulations.
The potential performance of the proposed scheme is measured
using various configurations, and it is concluded that the scheme
can become a viable alternative to building a single multi-ported
data cache.

1 Introduction

Efficient handling of memory references is one of the keys to
achieving high performance in processors that exploit instruction-
level parallelism (ILP). Although a significant body of work has
been done to tolerate or hide the memory latency, the ever widen-

ing processor-memory speed gap calls for more aggressive and in-
novative techniques to tackle this difficult problem. Furthermore,
the ability to provide the execution core with adequate (cache)
memory bandwidth becomes extremely critical for the next gen-
erations of wide-issue processors [25, 31]. For example, for a pro-
cessor to sustain ten instructions per cycle (IPC), the memory sub-
system should provide a minimum bandwidth of four references
per cycle, or more, to prevent excessive queuing delays, assuming
that about 40% of all instructions are loads and stores [15].

A straightforward approach for increasing memory bandwidth
is to implement a multi-ported data cache [25]. There are a number
of techniques to provide multiple cache ports: ideal multi-porting,
time-division multiplexing, replicating the cache, and interleav-
ing [21]. Except for the very expensive ideal multi-porting, these
techniques have been incorporated in recent superscalar proces-
sors. For example, DEC 21264 provides a two-ported data cache
by running the cache twice as fast as the processor clock [13],
DEC 21164, the predecessor of 21264, uses a replicated data
cache [9], and MIPS R10000 implements a two-way interleaved
data cache [33]. Each design, however, is either costly to imple-
ment, and/or has significant drawbacks. The time-division mul-
tiplexing does not scale beyond a certain number of ports (seem-
ingly two). The replication approach broadcasts a store to each
cache for data coherence, effectively limiting the data bandwidth
on stores, and requires doubled silicon area. The interleaving tech-
nique suffers from bank conflicts. The cost and delay of the cross-
bar between reservation stations and load/store units can become
significant. Moreover, it does not generally allow a scaling fac-
tor that is not a power of two,e.g., five or six, which is a severe
restriction to a balanced, cost-effective system design.

Instead of building a large set-associative data cache with mul-
tiple ports, we propose an alternative or complementary approach
toward higher memory bandwidth, called thedata-decoupled ar-
chitecture. It divides the data memory stream into two independent
streams before they enter the reservation stations, and feeds each
stream to a separate memory unit. The separation of independent
memory references, in an ideal situation, facilitates the use of dual
data caches with a smaller number of ports, each of which is as-

Figure 1. An example pipeline of (a) a conventional superscalar processor with a 4-port data cache and (b) a data-decoupled

architecture with dual memory access queues and caches with 2 ports each.

sociated with a dedicated pool of reservation stations or anaccess
queue.

The data-decoupled approach to the memory system design
can have two crucial advantages over a conventional design in a
wide-issue processor. First, the cost and complexity of building
a large cache with many ports is avoided. Instead, existing cache
designs with a smaller number of ports can be used. Further, the
network and the control logic for orchestrating memory accesses
between a large number of reservation stations and cache ports be-
come simpler. Such reduction in hardware complexity can lead to
a shorter clock cycle time [18]. Second, dividing the data stream
into smaller streams can open up new opportunities to optimize
each with specialized techniques. For instance, various specula-
tive techniques on data dependence and forwarding [16, 17, 30]
can be tailored to each stream for higher efficiency.

This paper investigates the potential of decoupling local vari-
able accesses from the memory stream and directing them to a
small separate cache called thelocal variable cache(LVC) via an
instruction queue called thelocal variable access queue(LVAQ).
To service the local variable accesses efficiently, we study two
optimizations –fast data forwardingandaccess combining. Al-
though there have been efforts to optimize local variable accesses
with hardware support in the past [8, 12, 26], little work has been
done to study their performance impact in the context of a wide-
issue superscalar processor with a multi-ported data cache. Exper-
imental results based on an execution-driven simulator and a set
of SPEC95 integer and floating-point programs suggest that the
proposed approach can achieve comparable or better performance
than a conventional approach. The additional hardware resources
for data decoupling seem to be modest.

In the remainder of the paper, Section 2 presents the concept of
the data-decoupled architecture, the motivation toward decoupling
local variable accesses, and the related architectural/compiler is-
sues. Section 3 then describes the experimental setup – the pro-
cessor model, the execution-driven simulation environment, and
the benchmark programs studied. Evaluation results are presented
in Section 4. Related work is discussed in Section 5, and the con-
clusions are summarized in Section 6.

2 Data-Decoupled Architecture

2.1 Concept of data decoupling

To extract and exploit more parallelism, a future superscalar
processor will establish a wide instruction window that consists
of a large number of reservation stations, from which instruc-
tions are steered to a set of pipelined functional units [19, 15].
Building such a processor, unfortunately, poses many great chal-
lenges; Especially, the hardware complexity1 of the logic that iden-
tifies and issues ready instructions from a pool of reservation sta-
tions becomes an increasingly severe impediment to a faster clock
rate [18]. The situation is exacerbated when there are multiple
functional units of the same type, such as identical integer ALUs,
because extra time may be needed for arbitration.

An effective way to control the hardware complexity is to par-
tition the instruction window among functional units so that only
the instructions from a particular window can issue to the asso-
ciated functional units. The MIPS R10000 processor, for exam-
ple, partitions the window into an integer queue, a floating-point
queue, and an address queue, based on the instruction type [33].
Thedata-decoupled architecturefurther partitions the instruction
window for data memory accesses, and provides a separate cache
for each partitioned window. An example of a pipelined, two-way
data-decoupled architecture is depicted in Figure 1(b). Decoupling
of data memory accesses at an early pipeline stage in a general-
purpose processor has not been seriously considered in the past.2

The data-decoupled architecture has two fundamental operat-
ing issues:memory stream partitioningandload balancing. First,
decoded memory access instructions should be partitioned into in-
dependent streams before they enter the instruction window, as
shown in Figure 1(b). Either run-time or compile-time informa-
tion on per-reference access type is needed. When run-time spec-
ulation [6, 15, 30, 17] is used for the classification, verification
and recovery actions are required to handle mispredictions. For

1Hardware complexity in this paper refers to the critical path length
that directly affects the clock cycle time.

2Instruction memory accesses have been handled via a separate I-cache.

Figure 2. Frequencies of memory access instructions among all the instructions. Two bars for each program denote loads

and stores from left. The corresponding program names of the labels (on X axis) are found in Table 2.

verification, a hardware mechanism is necessary to check whether
an instruction was correctly classified or not, before (or while)
it accesses the data. For instance, an annotation that indicates
which stream an access belongs to, can be added to eachTrans-
lation Look-aside Buffer(TLB) entry to this end. A run-time sys-
tem should maintain the annotation bits properly when new pages
are allocated, and the verification logic attached to each memory
pipeline can then use this information to determine the validity of
the memory access instruction in the pipeline. On a misprediction,
i.e., when it is detected that a memory instruction was inserted into
a wrong queue, a recovery action similar to the one for a branch
misprediction will be taken. Extracting classification information
at compile time, on the other hand, can simplify the hardware de-
sign, while putting more burden on the compiler. Using a hybrid of
both compile-time and run-time information can be more flexible
and cost-effective than using either one alone [6].3

Second, each partitioned stream should contain an adequate
amount of workload to justify the scheduling and possible com-
munication overhead. Moreover, different types of memory refer-
ences should be interleaved evenly for the approach to be effec-
tive. If only one type of references dominates, the resources for
the other type are under-utilized or wasted.

It should be noted that given the same number of available
cache ports, the net effect of data decoupling isnot an increased
IPC but decreased hardware complexity – less cache port require-
ments and simpler instruction issue logic. In fact, the resulting IPC
could be impaired due to unbalanced resource utilization. How-
ever, since it is increasingly difficult to add more than two ports to
a cache and to build a wide instruction window without penalizing
clock cycle time, achieving a comparable performance with sim-

3For example, a compiler can mark as many memory references as it
can, while leaving ambiguous references to the hardware for classification.
At run time, the dispatch unit can insert such references into a particular
memory access queue based on prediction. Alternatively, it can copy a
reference into both the memory access queues to eliminate any communi-
cation between them; In this case, the wrongly inserted copy in LSQ or
LVAQ will be killed at a later time.

pler hardware is a valid goal [18]. This is a very critical issue for
the future wide-issue processor proposals [15, 19, 23]; They put
more pressure on the data cache bandwidth as they aggressively
speculate on control and register values, and use high-bandwidth
instruction caches [34, 22]. Under such conditions, the proposed
approach can have a performance advantage by providing more
data bandwidth than a conventional technique at the same level
of hardware complexity. The proposed approach can also expose
opportunities for reduced memory access latency by properly par-
titioning memory references and optimizing each stream.

2.2 A case for decoupling local variable accesses

2.2.1 Background

A variable whose live range spans only within a function is called
a local variable.4 Local variables, also known asautomatic
variables, are allocated on the run-time stack when the function
that declares them is called, and are automatically deallocated
when the function exits. Although not visible to a programmer,
additional local variables are generated by a compiler for sav-
ing/restoring registers, passing arguments, and register spilling.
Memory accesses to these variables, usually indexed bystack
pointer ($sp), can constitute a large fraction of overall memory
references [11]. For example, spill codes can produce a significant
number of memory references at run time, as many as 20% of all
the executed instructions [1]. Even though spill codes could be
eliminated or reduced by increasing the number of (architected)
registers and/or by using a more sophisticated register allocation
scheme, such attempts are restricted by the current technologi-
cal trends; Aggressive ILP optimizations often increase register
pressure and could introduce extra spill codes. Ultra-fast proces-
sor clocks and considerations for instruction set architecture (ISA)

4Another definition of a local variable, from a programming language’s
point of view, is a variabledeclaredwithin a function. A locally declared
variable whose storage class isstatic is not “local” in our definition.

Figure 3. Dynamic frame size distribution of the integer

programs studied. The results under 99% percentile are

shown to ease reading. Ditzel and McLellan [8] report

similar results.

compatibility, as exemplified by the Intel’s x86 architecture, may
disallow increasing the size of a register file.

Figure 2 shows the frequency of local memory access instruc-
tions in a set of SPEC95 programs [27].5 A large fraction of mem-
ory references are to local variables, with an average of 30% of
loads and 48% of stores in the programs studied. Over 60% of
loads and 80% of stores are local variable accesses in147.vortex.
They correspond to 10% (129.compress) to 71% (147.vortex) of
all the memory references, with an average of 36%.

Despite the large amount of local variable accesses, their ref-
erence space tends to be small. Figure 3 shows the dynamic dis-
tribution of the function frame size in the programs studied. The
average frame size was only about 3 words. Our static analysis
also shows that most frames are very small, typically less than 25
words. The average frame size of 4746 functions in the studied in-
teger programs was only 7 words, while the largest frame was 282
words. Floating-point programs produced similar numbers also.
The results suggest that if a separate cache is used to hold the local
variables, it need not be large to obtain a high hit rate. In fact, this
has been the motivation for some previous work [8, 12, 26, 29].

The high frequency of local variable accesses and their strong
locality motivate us to consider decoupling and servicing the local
variable accesses separately. Moreover, identifying local variables
in the stack frames is relatively easy for hardware or compiler.

2.2.2 Architectural support

To service local variable accesses efficiently, a specialized hard-
ware organization to simulate the run-time stack may appear at-
tractive [8, 12, 26]. However, we use a more general cache design
called thelocal variable cache(LVC) in the framework of our
data-decoupled architecture. This approach has two advantages;
First, the LVC is a conventional cache and can leverage the most
efficient current design. Second, certain events, such as a buffer

5Measurements in Figure 2 and 3 are based on the machine architecture,
the input data, and the compiler options outlined in Section 3.

overflow due to bursty stack growth (that can happen when a re-
cursive function is called, for example) and a context switch, are
easily handled without CPU intervention.

The LVC is associated with a group of reservation stations,
called thelocal variable access queue(LVAQ). It has the same or-
ganization as the conventionalload store queue(LSQ). Since the
LVC is placed at the same level as the L1 cache, it will be attached
to the memory bus connecting to the L2 cache and will make the
bus arbitration logic slightly more complex.

Further optimizations are possible for the LVAQ and the LVC.
Two such techniques to improve the local variable accesses are
introduced:

� Fast data forwarding. In recent superscalar processors [33,
13], data is forwarded from a store to a later load of the same
address in the LSQ. This data forwarding enables faster loads
without accessing the data cache. There is another opportu-
nity to perform an even faster forwarding in the LVAQ. Ac-
cesses to the stack region in a procedure are usually based
on the same value of $sp,i.e., $sp is not updated within a
procedure. The dependence checking hardware can use the
offset field in the instructions to identify a matching store-
load pair within a function frame, even before their effective
addresses are calculated, thereby allowing a faster bypassing
of the data. This technique will be beneficial when there are
many local store-reload pairs within a small section of code,
such as spill codes generated by a compiler.

� Access combining[31]. When a program or a program re-
gion contains many local variable accesses, the number of
LVC ports can become a performance bottleneck. In fact, a
procedure call/return generates bursty stack accesses for sav-
ing/restoring registers and passing parameters. These stack
accesses show strong spatial locality,i.e., accessing adjacent
memory locations in a row.Access combiningtries to com-
bine two or more contiguous references that fall onto the
same LVC line at the expense of wider LVC ports, buffers,
and associated logic. The technique will decrease the traffic
to the LVC, releaving the bandwidth requirement on it.

2.2.3 Compiler issues

Most local variable accesses are accurately identifiable by a com-
piler when the compiler comes across their declarations, handles a
procedure call, or performs register allocation. There are, however,
cases when it is ambiguous to determine if an instruction accesses
a local variable or not. Passing a local variable as a parameter,
for instance, may hinder correct identification. Figure 4 depicts
the situation;bar() reads a value from the frame offoo () via a
pointer. Ifbar () is called only byfoo (), the compiler could sim-
ply mark the load inbar () as “local”. If that is not the case,Z can
actually point to a variable allocated in the heap or global region.
The compiler cannot classify the load as either local or non-local in
this case. To get around this problem, the compiler could either re-
allocateX as a “non-local” static variable, or duplicate or expand
bar () to provide a local variable accessing version. The studied
programs had less than 1% of (static) memory access instructions
on average that access both the local and non-local variables at
run time. Using a simple 1-bit hardware predictor storing the pre-
vious access region of these small number of instructions results in

Figure 4. An example of accessing a local variable via a

pointer.

about 99.9% of all the dynamic memory references correctly clas-
sified into local and non-local accesses [6]. Therefore, this paper
assumes that a processor can accurately separate the local accesses
from others with such hardware and software techniques.

To convey the classification information to the processor, each
memory access instruction may be associated with a bit, indicat-
ing to which memory access queue (LSQ or LVAQ) the instruction
need be steered. Alternatively, the processor can assume those ac-
cesses indexed by $sp (orframe pointer, $fp) as local variable ac-
cesses [8]. Not all local accesses, however, may be indexed by
$sp or $fp; When the address of a local variable is taken to index
through the data structure, $sp is not used. Also, having too many
local variables in a procedure can overflow the offset used in con-
junction with $sp, forcing the compiler to use another register for
indexing.6 The studied benchmark programs had less than 5% of
stack references that are not indexed by $sp or $fp.

Optimizations to allocate more variables on the run-time stack
are possible. For example, inter-procedural data-flow analysis
on statically allocated variables can discover variables whose live
range actually is within a function. Programs written in Fortran
will benefit from this technique. A recursive function can be re-
structured to a non-recursive version, either by a programmer or a
compiler, if it degrades the LVC hit rate.

As the cost of register spilling becomes relatively small and
predictable when the proposed technique is used, the compiler
could find more opportunities for aggressive optimizations. Loops
which previously couldn’t benefit from the unrolling optimization
or software pipelining due to high register pressure, may use such
program optimizations based on a new cost model.

3 Experimental Setup

3.1 Simulator and machine model

We develop and use a cycle-accurate execution-driven simula-
tor derived from thesim-outordersimulator in the SimpleScalar
tool set [3]. The machine model used in the experiments is a su-
perscalar processor that supports out-of-order issue and execution,
based on theRegister Update Unit(RUU) [24]. The RUU scheme

6Two such functions have been found in the programs studied –load-
core() anddumpcore() in 124.m88ksim. These functions use over 11K
words of stack space, by allocating a huge C structure and a buffer. A
compiler can easily recognize these memory references as local.

BASE MACHINE MODEL

Issue width 16
No. of regs. 32 GPRs/32 FPRs

ROB/LSQ size 128/64
Func. units 16 integer+ 16 FP ALUs,

4 integer+ 4 FP MULT/DIV units.
L1 D-cache 2-way set-assoc. 32 KB. 2-cycle hit time.
L2 D-cache 4-way. 512 KB. 12-cycle access time.

Memory 50-cycle access time. Fully interleaved.
I-cache Perfect I-cache with 1 cycle latency.

Br. prediction Perfect.
Inst. latencies Same as those of MIPS R10000 [33].

Table 1. The base machine model. Decode and commit

widths are the same as the issue width.

uses a reorder buffer (ROB) to automatically perform register re-
naming and hold the results of pending instructions. In each cy-
cle, the ROB retires completed instructions in program order to
the architected register file. The processor pipeline consists of six
stages: fetch, dispatch (decode and register renaming), issue, exe-
cution, writeback, and commit. Depending on the instruction type,
more than one cycle can be taken in the execution stage.

The processor’s memory system employs a load/store queue
(LSQ). Store values are placed in the queue if the store is specu-
lative. Loads are dispatched to the memory system when the ad-
dresses of all previous stores are known. Loads may be satisfied
either by the memory system or by an earlier store value residing
in the queue. In the latter case, the store-to-load forwarding delay
is one cycle.

For the experiments in this paper, a processor model that can is-
sue up to 16 instruction per cycle is used, which represents a future
wide-issue processor with aggressive issue bandwidth from a large
instruction window. The ROB has 128 entries and the LSQ has 64
entries, which are derived from the MIPS R10000 implementa-
tion [33]. The ROB and the LSQ effectively form the instruction
window of the processor. The primary on-chip data cache is 32
KB in size and 2-way set-associative, and has 2-cycle hit time as
in some recent machines [33, 13]. The 512 KB L2 cache, either
on-chip or off-chip, has a 12-cycle hit latency. Both caches are
lock-up free. When data decoupling is used, a direct-mapped 2
KB LVC is employed. The line size of the caches is 32 Bytes.

Because the goal of the experiments is to study the potential of
the proposed scheme, we employ an ideal front-end for the pro-
cessor model in our study – a perfect instruction cache (100% hit
ratio) with a perfect (or oracle) branch predictor, in order to assert
a maximum memory bandwidth demand on our memory system
as well as to isolate the impact of the proposed scheme from other
factors. Important parameters of the base machine model are sum-
marized in Table 1.

3.2 Benchmark programs

We use eight integer and four floating-point programs from
the SPEC95 benchmark suite [27], whose inputs and instruction

Figure 5. Relative performance of (N+0) configurations to the (16+0) configuration where N is varied from 1 to 5.

counts are described in Table 2. Instruction mixes of these pro-
grams, in terms of memory and non-memory instructions, are
shown in Figure 2. All the programs were compiled using EGCS7

version 1.1b [10] at the -O3 optimization level with loop unrolling.
Either train or testinput is used in most cases, with some data set
modification to control the simulation time.

Benchmark Input Inst. count

099.go train 541M
124.m88ksim ref 250M

126.gcc stmt-protoize.i 220M
129.compress train (100K) 293M

130.li ctak.lsp 434M
132.ijpeg penguin.ppm 621M
134.perl scrabbl.pl 525M

147.vortex train (1 iter.) 284M
101.tomcatv test (N = 253, 1 iter.) 549M
102.swim test (3 iter.) 473M
103.su2cor test 676M
107.mgrid train (1 iter.) 684M

Table 2. Input and dynamic instruction count of each

benchmark program.

4 Evaluation Results

This section begins by addressing the question: “How much
data cache bandwidth does each program need ?” in the first sub-
section, to provide a basis for the following discussions. A cache
or an LVC port used in the experiments is assumed to be “ideal”8

not to limit the results and discussions to a specific multi-ported
data cache implementation. The notation “(N+M)” is used to de-

7EGCS is based on widely used GCC. It has a global CSE pass and
a global instruction scheduling pass additionally, assisted by an improved
alias analysis algorithm.

8Under this assumption, anN -port cache can serviceN data requests
in any combination per cycle.

note a configuration with an N-port data cache and an M-port LVC.
If M is zero, no LVC or LVAQ is used.

4.1 Program bandwidth requirements

Figure 5 shows the performance of (N+0) configurations rela-
tive to the performance of the (16+0) configuration (i.e., the limit
case with a maximum bandwidth) when N is varied from 1 to 5.
Results suggest that a three- or four-ported data cache provides the
processor with enough bandwidth to achieve the maximum perfor-
mance. A cache with two ports obtains almost 90% of the max-
imum performance on average. Programs with frequent memory
accesses, such as130.li and147.vortex, are more sensitive to the
data cache bandwidth. In the following experiments, we focus on
the (2+M), (3+M), and (4+M) configurations, which more or less
correspond to the situations where the cache bandwidth is rather
constrained, adequate, and amply available, respectively. When
comparing the performance of different configurations, we use the
relative performance over the (2+0) configuration.

4.2 LVC and LVAQ parameters

It is difficult to determine the most cost-effective combination
of the parameters for the data cache, the LVC, and the LVAQ. In-
stead of exhaustively searching for a “best” combination, we study
the individual performance impact and characteristics of some of
the important parameters. For the LVC, the LVC size and the num-
ber of ports to the LVC are studied. For the LVAQ, the impact of
the degree of access combining and the fast data forwarding is an-
alyzed. We use an LVAQ of 64 entries in our experiments.

4.2.1 LVC size

The size of the LVC should be carefully chosen to keep the miss
rate low. At the same time, the LVC should be sufficiently small
and simple to keep the access time short.

Figure 6 shows the measured miss rates when the LVC size
is varied from 0.5 KB to 4 KB. A 2 KB LVC achieves a hit rate
of over 99% for all the programs except126.gcc. A 4 KB LVC
obtains a hit rate of 99.5% or more for all the programs, with an
average of about 99.9%. The major reason why a small LVC can
achieve a high hit rate is that function frames tend to be very small

Figure 6. Miss rates of the LVC of different sizes. 126.gcc

and 129.compress show the highest and lowest miss

rate, respectively. A direct-mapped LVC with four ports

is used for measurement.

as discussed previously. Furthermore, most of the programs have
a call depth of four or five routines [28]. The line size of the LVC,
being it 32 or 64 Bytes, has a negligible effect on the hit rate when
the LVC size is larger than or equal to 2 KB. The hit rate of an LVC
is also relatively insensitive to the input data, because the function
frames are generally determined at compile time.

For the rest of the experiments, a 2 KB, direct-mapped LVC
with one-cycle hit latency is used.9 We prefer this design to a 4
KB LVC or a set-associative LVC, because a small direct-mapped
cache is likely to have an access time advantage when a fast clock
is used [14]. Furthermore, adding additional ports to this small
LVC is much cheaper than to a large data cache like the one used
in our study (32 KB).

The additional caching space provided by a 2 KB LVC resulted
in slight decrease in traffic to the L2 cache for all the programs ex-
cept126.gcc, which experienced a slight increase. In130.li and
147.vortex, there was a considerable reduction in the L2 cache ac-
cesses (and accordingly the traffic on the memory bus), of 24%
and 7%, respectively, implying that these programs have many
conflicts between local variables and other data, attempting to oc-
cupy space in the data cache. This decrease in the memory bus
traffic will improve the overall performance of a processor in the
presence of heavy traffic on the bus.

4.2.2 Number of LVC ports

Figure 7 shows the impact of having an LVC with a varying
number of ports. In all cases, the addition of an one-port LVC
(the (N+1) configurations) degrades the performance due to poor
load balance, since the LVC becomes the performance bottleneck.
Adding another port to the LVC (the (N+2) configurations) quickly
restores the lost IPC and attains a speedup of about 1 – 10% over
the (N+0) configurations. Providing more than three LVC ports
produces only a slight performance gain, suggesting that a three-
port LVC offers nearly unlimited bandwidth for local variable ac-
cesses in the studied model.

9Results with a two-cycle LVC are discussed in Section 4.3.

Figure 7. Performance of various (N+M) configurations.

The (N+16) configuration provides an unlimited LVC

bandwidth for the machine model.

4.2.3 Impact of fast data forwarding in LVAQ

Table 3 shows the performance improvement provided by fast data
forwarding. Speedups of up to 3.9% were observed.124.m88ksim
does not benefit from the technique at all, because only about 1%
of the loads actually find their values in the LVAQ. On the other
hand,129.compressgains a speedup of 1.2% even though it has
fewer local variable accesses, because almost 80% of all the lo-
cal variable loads find their values in the LVAQ. This suggests that
the reuse distance of local variable accesses in129.compressis
relatively short. In spite of many local variable accesses,130.li
didn’t get a noticeable speedup, because most of the local variable
accesses are not on the critical path of the program. Bandwidth,
therefore, is more important than latency in this case. Figure 11
shows that when the memory bandwidth is the performance bot-
tleneck (N = 2), adding a two-port LVC achieved a spectacular
speedup of over 25%, whereas a speedup of less than 2% was ob-
served when there is sufficient bandwidth already (N = 4).

Program 099 124 126 129 130 132
Speedup 2.1% 0% 1.2% 1.2% 0.3% 1.9%

Program 134 147 101 102 103 107
Speedup 3.1% 3.9% 3.9% 0.2% 0.5% 0%

Table 3. Performance improvement with fast data for-

warding under the (3+2) configuration.

4.2.4 Impact of access combining in LVAQ

Figure 8 shows the effect of access combining under the (3+1)
and (3+2) configurations. Two-way combining achieves a speedup
of around 8% and 2% over “No Combining” in each configura-
tion. Two programs,130.li and147.vortex(not shown), exhibited
a speedup of 16% and 26%, respectively, in the (3+1) configura-
tion. 147.vortexstill crops over 12% speedup in the (3+2) config-
uration.

Figure 8. Performance of access combining. N-way com-

bining looks at up to N consecutive entries in the LVAQ

for access combining.

The results suggest that access combining can considerably re-
duce the bandwidth requirements on the LVC, especially when the
memory pressure is high (or when the provided bandwidth is in-
sufficient). Taking into account the hardware complexity of the
access combining, the two-way combining seems to be a reason-
able choice for implementation. Figure 9 presents the performance
of various (N+M) configurations with the fast data forwarding and
access combining. Compared with Figure 7, the performance of
the (N+1) configuration is noticeably improved. The performance
of various (N+M) configurations for 4 selected programs is plotted
in Figure 11.

4.3 Sensitivity to cache access latency

In this subsection, we study the performance impact of adding
an extra clock cycle to the cache hit latency. The situation may
occur if the hardware complexity related to the memory system
becomes excessive and the machine designer has to increase the
memory access time, not to prolong the clock cycle time. Fig-
ure 10 presents the results.

The (4+0) configuration with a three-cycle hit time (fourth bar)
degrades the performance by as much as 13.4% (099.go) com-
pared with the (4+0) configuration with a two-cycle hit time. In
certain cases (099.go, 128.m88ksim, and 129.compress), it was
outperformed by the (2+0) configuration (bars below “zero”). The
figure also shows that the (2+2) configuration whose performance
is comparable to that of the (4+0) configuration with two-cycle ac-
cess latency, performs consistently better than the (4+0) configu-
ration with three-cycle cache access time for the integer programs.

For floating-point programs, however, the (4+0) configuration
performed better than the (2+2) configuration. In these programs,
the occurrences of local and non-local accesses are not interleaved
well to benefit from the partitioned caches. Hence, the perfor-
mance of the (2+2) configuration is close to that of the (2+0) con-
figuration. The (2+2) configuration shows a slight performance
degradation in103.su2cordue to undesirable interactions between
cache accesses and the data forwarding in the LSQ,i.e., more in-
structions access the 2-cycle data cache instead of being serviced

Figure 9. Performance of various (N+M) configurations

with the proposed optimizations.

by the 1-cycle forwarding in the LSQ, since accesses are divided
into the LSQ and the LVAQ now, making the queue lengths shorter
than before.

We also studied the impact of increasing the LVC access time
to two (not shown in the figure); It was observed that the over-
all performance is almost insensitive to the LVC latency. This is
in part because many LVC accesses (50 – 90%) find their values
in the LVAQ before they reach the LVC, and in part due to the
dynamic scheduling capability of the processor. The (3+3) config-
uration provides sufficient bandwidth for both local and non-local
accesses and performs about 5% better than the (4+0) configura-
tion for integer programs.

4.4 Discussions

Our experiments show that data decoupling with an LVC can
achieve a comparable performance to a single heavily multi-ported
data cache. Therefore, when the hardware complexity of such a
multi-ported data cache puts a severe pressure on the clock cy-
cle time or the cache hit latency, the proposed scheme can be-
come a viable and attractive alternative. In099.go, 132.ijpeg, and
147.vortex, the use of the fast access path for local variable ref-
erences yields a performance improvement that is not achievable
by adding more ports to the data cache. Hence, data decoupling is
also complementary to the conventional cache design.

Finally, one may envision that a small (e.g., 2 KB) fast L1 cache
(with one or more levels of larger caches on chip) is a more ef-
fective solution to the bandwidth and latency problem in a wide-
issue processor. The cost-effectiveness of this approach should
be studied in depth; However, our preliminary simulation results
(not shown) suggest that the inevitably higher miss rates negate the
performance gain due to a short access latency unless the L2 cache
latency is less than four cycles. It is worth noting that the recent
21264 processor [13] has incorporated a 64 KB L1 data cache,
eight times larger than that of its predecessor [9].

5 Related Work

The idea of optimizing accesses to local variables on run-time
stack is not new. Ditzel and McLellan [8] studied a transpar-

Figure 10. Performance of various configurations.

ent data buffer as a close mapping of the run-time stack, called
the stack cache. The stack cache is effectively a large register
file to simulate the run-time stack that replaces the general regis-
ter file. The contour buffer proposed by Flynn and Hoevel [12]
in their Directly Executed Languagesmodel, is a programmer-
addressable buffer that is used in conjunction with the run-time
stack in memory. Stanley and Wedig [26] proposed three buffer
management algorithms for a Top of Stack (TOS) buffer, which
is a register file designed to cache the top elements of the stack.
These studies aimed primarily at reducing the impact of a pro-
cedure call/return on the processor performance, motivated by an
observation that programs written in a high-level language tend to
have many procedure calls and returns [11], and that a function
call is the most costly source language statement [20]. Unlike the
previous approaches, the technique proposed in this paper does
not require processor intervention or complex algorithms to man-
age the buffer, which were mandated in the previous techniques
to deal with buffer overflow/underflow and context switches. The
proposed LVC under the data-decoupled architecture framework
fits in the memory hierarchy, and the data movement between the
LVC and lower-level memory is initiated automatically. It is also
noted that no previous work has considered separating local vari-
able accesses to relieve the data cache bandwidth in the context of
a wide-issue superscalar processor. Among current microproces-
sors, Sun UltraSparc employs a special register file structure called
register windowto reduce the cost of a procedure call/return [29].

Chow and Hennessy [7] categorize memory traffic into five
types of references after register allocation – unallocated refer-
ences, global scalars, save/restore memory references, a required
stack reference, and a computed reference. Register allocation
techniques with various heuristics [4, 2, 7, 1] try to efficiently as-
sign a set of hard registers to the live ranges. Increasing the number
of registers or using a sophisticated register allocation scheme will
cut down the number of memory references in the first category
above. Using a large number of registers, however, may increase
the overhead of the third type of memory traffic. The proposed ap-
proach is complementary to such software efforts, and offers the
processor a fast access mechanism for the first, third, and fourth
types of memory traffic.

There are dynamic techniques to decouple a portion of data

references and service them using separate, specialized functional
units. Lipasti introduced a notion calledload stream partitioning
in his Superflow processor model [15], which partitions loads into
multiple streams based on their run-time behavior, and sends them
to disjoint functional units for processing. The functional units
used include a constant verification unit, a queue for load/store
folding, a stream buffer/prefetch engine, and a conventional data
cache. Techniques to detect dependent memory access instruc-
tions and explicitly synchronize and forward data between them
have been proposed [30, 17]. They provide a dynamic technique
to detect a producer operation and a consumer operation within the
instruction window, and try to forward the data in a special buffer
before the effective addresses are calculated, without accessing the
cache memory. Compared to these approaches, data decoupling
requires much simpler mechanism for dynamic classification – a
small hardware table and simple instruction decoding logic [6].
The technique proposed in this paper can be implemented with the
above techniques together. In fact, it may expose more opportuni-
ties for dynamic dependence speculation methods. For example,
more tailored prediction techniques can be used for the streams of
memory reference in the LSQ and the LVAQ, and the large com-
bined window provided by the LSQ and the LVAQ will allow more
dependent instructions far away from each other to be linked to-
gether.

Designing an effective multi-ported cache has been a continu-
ing topic of active research [25, 31, 32, 21]. These studies have
focused on increasing the efficiency of cache ports by adding a
small buffer, or understanding tradeoffs of various strategies in
terms of cost and performance under specific processor models.
The data-decoupled architecture is orthogonal to the data cache
design techniques. Decoupling local variable accesses, however,
may dramatically change the memory access patterns seen by the
data cache. The change in the memory access behavior may favor
a particular data cache design over another.

6 Concluding Remarks

This paper studied the potential of decoupling local variable
accesses using a processor model that represents a future wide-
issue superscalar processor. Following contributions are made in

the paper:

� We introduce the notion of the data-decoupled architecture,
which splits the instruction window for memory access into
two independent windows, each of which is connected to
a dedicated cache. The approach is expected to have im-
plementation and performance advantages over a conven-
tional multi-ported memory system, especially when it is dif-
ficult to control the hardware complexity because a processor
adopts a large number of reservation stations and requires a
data cache with many ports.

� It is shown that the local variable accesses in a program con-
stitute a large fraction of the total memory references using
a set of SPEC95 programs. It is also shown that the space
required by local variables for each static function is very
small, averaging around 7 words. Some of the compiler is-
sues are discussed, which include identifying local variable
accesses and possible optimizations.

� We give a preliminary evaluation of thelocal variable cache
(LVC) and thelocal variable access queue(LVAQ). They
are shown to effectively provide more data bandwidth and
facilitate faster local variable accesses. A small 2 KB LVC
could achieve over 99% hit rate for most of the programs.
Two optimization techniques, fast data forwarding and ac-
cess combining, are proposed and evaluated.

� We study the impact of decoupling local variable accesses
using execution-driven simulations. Results show that the
proposed decoupled approach secures comparable perfor-
mance compared to a conventional unified data cache design
with the same number of ports. In certain cases, the pro-
posed technique offers an opportunity for performance im-
provement that is not achieved by adding more ports to the
data cache.

Compiler and architectural considerations for efficient mem-
ory handling remain as a very important part of designing a bal-
anced, cost-effective processor. We expect that thedecouple-and-
conquerapproach to the memory bandwidth and/or latency prob-
lem, as proposed in this paper, will be of greater significance as
more aggressive wide-issue processors emerge.

Acknowledgment

This work was supported in part by NSF grants MIP-9610379 and
CDA-9502979, a gift from Intel Corp., and by the U.S. Army Intelligence
Center and Fort Huachuca under contract DABT63-95-C-0127 and ARPA
order no. D346. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the U.S.
Army Intelligence Center and Fort Huachuca, or the U.S. Government.
Sangyeun Cho was supported in part by a doctoral fellowship from the
Korea Foundation for Advanced Studies (KFAS). Gyungho Lee was sup-
ported in part by DoD/Air Force grant F49620-96-1-0472. This work was
done while the first author was with the University of Minnesota. The au-
thors are grateful to David Lilja, Dongsoo Kim, Jinseok Kong, Qing Zhao,
and the referees for their comments and encouragements on drafts of this
paper. Special thanks go to those who have developed and maintained the
SimpleScalar tool set used in this work, especially Todd Austin and Doug

Burger. Prof. Soo-Mook Moon at Seoul National University helped with
the final version of the paper by providing computing resources.

References

[1] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe. “Spill Code
Minimization via Interference Region Spilling,”Proc. of the 1997
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, pp. 287 – 295. June 1997.

[2] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. “Coloring
Heuristics for Register Allocation,”Proc. of the 1989 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pp.
275 – 284. July 1989.

[3] D. Burger and T. M. Austin. “The SimpleScalar Tool Set, Version
2.0,” Computer Sciences Department Technical Report, No. 1342,
Univ. of Wisconsin, June 1997.

[4] G. J. Chaitin. “Register Allocation and Spilling via Graph Coloring,”
Proc. of the 1982 ACM SIGPLAN Symp. on Compiler Construction,
pp. 98 – 105, June 1982.

[5] S. Cho, P.-C. Yew, and G. Lee. “Decoupling Local Variable Accesses
in a Wide-Issue Superscalar Processor,”Technical Report #98-020,
Dept. of Computer Sci. and Eng., Univ. of Minnesota, May 1998.

[6] S. Cho, P.-C. Yew, and G. Lee. “Access Region Locality for High-
Bandwidth Processor Memory System Design,”Technical Report
#99-004, Dept. of Computer Sci. and Eng., Univ. of Minnesota, Feb.
1999.

[7] F. C. Chow and J. L. Hennessy. “The Priority-Based Coloring Ap-
proach to Register Allocation,”ACM Trans. on Programming Lan-
guages and Systems, 12:4, Oct. 1990.

[8] D. Ditzel and R. McLellan. “Register Allocation for Free: The C
Machine Stack Cache,”Proc. of the Symp. on Architectural Support
for Programming Languages and Operating Systems, pp. 48 – 56,
March 1982.

[9] J. Edmondsonet al. “Internal Organization of the Alpha 21164, a
300-MHz, 64-Bit, Quad-Issue, CMOS RISC Microprocessor,”Digi-
tal Technical Journal, Volume 7, Number 1, 1995.

[10] EGCS Project.http://egcs.cygnus.com .

[11] J. Emer and D. Clark. “A Characterization of Processor Performance
in the VAX-11/780,” Proc. of the 11th Int’l Symp. on Computer Ar-
chitecture, June 1984.

[12] M. J. Flynn and L. W. Hoevel. “Execution Architecture: The DEL-
tran Experiment,”IEEE Trans. on Computers, C-32(2): 156 – 175,
Feb. 1983.

[13] L. Gwennap. “Digital 21264 Sets New Standard,”Microprocessor
Report, Volume 10, Issue 14, Oct. 1996.

[14] M. D. Hill. “A Case for Direct-Mapped Caches,”IEEE Computer,
pp. 25 – 40, Dec. 1988.

[15] M. H. Lipasti and J. P. Shen. “Superspeculative Microarchitecture
for Beyond AD 2000,”IEEE Computer, pp. 59 – 66, Sept. 1997.

[16] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. “Dy-
namic Speculation and Synchronization of Data Dependences,”Proc.
of the 24th Int’l Symp. on Computer Architecture, pp. 181 – 193, June
1997.

[17] A. Moshovos and G. S. Sohi. “Streamlining Inter-operation Memory
Communication via Data Dependence Prediction,”Proc. of the 30th
Annual Int’l Symp. on Microarchitecture, pp. 235 – 245, Dec. 1997.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith. “Complexity-Effective
Superscalar Processors,”Proc. of the 24th Int’l Symp. on Computer
Architecture, pp. 206 – 218, June 1997.

[19] Y. N. Patt, S. J. Patel, D. H. Friendly, and J. Stark. “One Billion
Transistors, One Uniprocessor, One Chip,”IEEE Computer, pp. 51 –
57, Sept. 1997.

[20] D. A. Patterson and C. H. Sequin. “A VLSI RISC,”IEEE Computer,
pp. 8 – 21, Sept. 1982.

[21] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. “On
High-Bandwidth Data Cache Design for Multi-Issue Processors,”
Proc. of the 30th Annual Int’l Symp. on Microarchitecture, pp. 46
– 56, Dec. 1997.

[22] E. Rotenberg, S. Bennet, and J. E. Smith. “Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching,”Proc. of
the 29th Annual Int’l Symp. on Microarchitecture, pp. 24 – 34, Dec.
1996.

[23] E. Rotenberg, Q. Jacobson, and J. E. Smith. “Trace Processors,”
Proc. of the 30th Annual Int’l Symp. on Microarchitecture, pp. 138 –
148, Dec. 1997.

[24] G. S. Sohi. “Instruction Issue Logic for High-Performance, Interrupt-
ible, Multiple Functional Unit, Pipelined Computers,”IEEE Trans.
on Computers, 39(3):349 – 359, March 1990.

[25] G. S. Sohi and M. Franklin. “High-Bandwidth Data Memory Sys-
tems for Superscalar Processors,”Proc. of the Fourth Int’l Conf.
on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 53 – 62, April 1991.

[26] T. J. Stanley and R. G. Wedig. “A Performance Analysis of Automat-
ically Managed Top of Stack Buffers,”Proc. of the 14th Int’l Symp.
on Computer Architecture, pp. 272 – 281, June 1987.

[27] The Standard Performance Evaluation Corporation,
http://www.specbench.org .

[28] Y. Tamir and C. H. Sequin. “Strategies for Managing the Register
File in RISC,” IEEE Trans. on Computers, C-32(11): 977 – 989,
Nov. 1983.

[29] M. Tremblay, B. Joy, and K. Shin. “A Three Dimensional Register
File for Superscalar Processors,”Proc. of the 28th Annual Hawaii
Int’l Conf. on Systems Sciences, IEEE CS Press, 1995.

[30] G. Tyson and T. M. Austin. “Improving the Accuracy and Perfor-
mance of Memory Communication Through Renaming,”Proc. of the
30th Annual Int’l Symp. on Microarchitecture, pp. 218 – 227, Dec.
1997.

[31] K. M. Wilson, K. Olukotun, and M. Rosenblum. “Increasing Cache
Port Efficiency for Dynamic Superscalar Microprocessors,”Proc. of
the 23th Int’l Symp. on Computer Architecture, pp. 147 – 157, May
1996.

[32] K. M. Wilson and K. Olukotun. “Designing High Bandwidth On-
Chip Caches,”Proc. of the 24th Int’l Symp. on Computer Architec-
ture, pp. 121 – 132, June 1997.

[33] K. C. Yeager. “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, Volume 16, Number 2, pp. 28 – 40, April 1996.

[34] T.-Y. Yeh, D. T. Marr, and Y. N. Patt. “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch Address
Cache,” Proc. of the 7th Int’l Conf. on Supercomputing, pp. 67 –
76, July 1993.

Figure 11. Performance of 126.gcc, 130.li, 147.vortex
and 102.swimunder various (N+M) configurations. Re-

sults of other programs can be found in [5].

