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Abstract 
 Pointer analysis plays a critical role in modern 

C compilers because of the frequent appearances of 
pointer expressions. It is even more important for 
data dependence analysis, which is essential in 
exploiting parallelism, because complex data 
structures such as arrays are often accessed through 
pointers in C.  One of the important aspects of 
pointer analysis methods is their granularity, the way 
in which the memory objects are named for analysis. 
The naming schemes used in a pointer analysis affect 
its effectiveness, especially for pointers pointing to 
heap memory blocks. In this paper, we present a new 
approach that applies the compiler analysis and 
profili ng techniques together to study the impact of 
the granularity in pointer analyses. An 
instrumentation tool, based on the Intel’s Open 
Resource Compiler (ORC), is devised to simulate 
different naming schemes and collect precise target 
sets for indirect references at runtime. The collected 
target sets are then fed back to the ORC compiler to 
evaluate the effectiveness of different granularity in 
pointer analyses. The change of the alias queries in 
the compiler analyses and the change of performance 
of the output code at different granularity levels are 
observed. With the experiments on the SPEC 
CPU2000 integer benchmarks, we found that 1) finer 
granularity of pointer analysis show great potential 
in optimizations, and may bring about up to 15% 
performance improvement, 2) the common naming 
scheme, which gives heap memory blocks names 
according to the line number of system memory 
allocation calls, is not powerful enough for some 
benchmarks. The wrapper functions for allocation or 
the user-defined memory management functions have 
to be recognized to produce better pointer analysis 
result, 3) pointer analysis of fine granularity requires 
inter-procedural analysis, and 4) it is also quite 
important that a naming scheme distinguish the fields 
of a structure in the targets. 

1.  Introduction 

The pervasive use of pointer expressions in C 
programs has created a serious problem for the C 

compilers. Without proper pointer analyses, 
compilers would not have accurate knowledge of 
what memory objects may have been accessed by 
indirect references. Consequently, many other 
important analyses, such as data dependence analysis 
on arrays and complex data structures, may suffer 
from the conservative assumptions about the targets 
of pointers. Hence, pointer analysis plays a critical 
role in C compilers in exploiting parallelism [12]. It 
provides the analysis base for other analysis and 
parallelizing techniques. 

 Many pointer analysis methods have been 
proposed ([1, 2, 3]). Among all the pointer analyses, 
the points-to analysis [2, 4, 5, 6, 7, 8, 9, 10, 15] is the 
most widely used. A points-to analysis aims to 
produce a set of potential targets for each indirect 
reference so that the alias relationship among pointers 
can be determined by comparing their target sets. 
Efforts have been put in searching for a good points-
to analysis [11, 12, 13, 21]. 

The effectiveness of a pointer analysis is 
generally determined by two factors: the algorithm 
used, and the granularity of the points-to targets 
specified in the compiler. For example, the 
algorithms used by compilers may have different 
flow-sensitivity or context sensitivity. The algorithm 
may also be applied inter-procedurally or only intra-
procedurally.  

To calculate the target sets, the address space of 
memory objects in a program should first be assigned 
names. The granularity of the names represents the 
precision of the naming schemes used in pointer 
analysis. Different naming schemes may lead to 
different granularity in pointer analyses. In general, 
there are two types of memory objects: the local or 
global variables defined in the program, and heap 
memory blocks allocated at runtime. The pointers 
that point to global or local variables are called stack-
oriented pointers; and the pointers that point to 
memory blocks are called heap-oriented pointers [5]. 
For heap-oriented pointers, their target objects are 
anonymous. Compilers have to assign them names 
internally before the target sets could be calculated. 
For example, if the compiler assigns the entire heap 
space with only one name, the entire heap space will 
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be viewed as only one large memory object. All of 
the pointers point to different memory locations in 
the heap space will have the same target in their 
target sets, and they will all be aliases. On the other 
hand, for stack-oriented pointers, global and local 
variables usually have explicitly given variable 
names in the program, and with well -defined types. 
However, if the compiler treats an entire data 
structure with many fields as a single memory object, 
all of the pointers point to the different fields of the 
data structure will be aliases.  

The granularity of the target objects and its 
related naming schemes not only affect the results of 
a pointer analysis, but also the eff iciency of its 
algorithm. Finer granularity will allow better 
distinction among different memory objects, and 
hence, fewer aliases. However, it may lead to a larger 
name space and possibly larger target set sizes, and 
hence, longer time and more storage requirement for 
a points-to analysis. 

Various naming schemes have been proposed in 
the past [10, 16, 24, 27, 28]. For anonymous heap 
memory objects, the place where they are allocated is 
used to name them. For memory objects of structure 
type, the field names may be used in their names. 
Some experiments have been done [25, 29] and 
showed the importance of proper naming methods. 
However a comprehensive study on the impact of the 
granularity on pointer analysis has not been done. 
Most of the previous studies focus primarily on the 
algorithms. One reason is that it is not trivial to 
implement different naming schemes in conjunction 
with various pointer analysis algorithms. Another 
reason is that the heap memory objects have not 
received enough attention in the past. In most 
compilers, only very simple naming schemes are 
used for heap memory blocks. However, a recent 
study shows that the number of heap-oriented 
pointers is quite significant in most SPEC CPU2000 
programs [17]. Hence, it is important to look at the 
impact of naming schemes and the granularity on the 
pointer analysis and the optimizations that use the 
results of the pointer analysis. 

In this paper, we study this problem using a new 
approach that combines the profili ng techniques and 
the compiler analysis. We developed an 
instrumentation and profili ng tool set based on the 
Intel’s Open Research Compiler (ORC) [14]. 
Different naming schemes are simulated and the 
precise target sets of indirect references (e.g. 
pointers) are collected at runtime for the points-to 
analysis. We then feed the results of the points-to 
analysis back to the ORC compiler. The 
improvement on the results of alias queries in other 
compiler analysis and optimizations and the 
performance of the code thus generated are also 
measured. Our experiments are conducted on SPEC 

CPU2000 integer benchmarks and on Intel Itanium 
computers. 

The suggested approach does not have to 
implement pointer analyses with different granularity 
in a compiler. It is much easier to simulate these 
analyses with a runtime tool. The points-to set 
collected by this tool is an upper bound result and 
reveals the potential of different granularity. Using 
the optimizations in the ORC compiler as consumers 
makes the measurement of effectiveness meaningful. 
However, we have to admit that some import issues, 
such as the impact of the algorithm, are not covered 
in this paper. 

The main contributions of this paper include: 
• A comprehensive study on the naming schemes 

and the granularity of the pointer analysis. We 
found that the widely used simple naming schemes 
are inadequate. Wrapper functions and self-
management functions that contain system 
memory allocation functions (such as malloc()) 
need to be carefully analyzed. It is also important 
for a pointer analysis to consider the fields of a 
data structure. 

• A set of instrumentation and profili ng tools to 
study issues related to pointer analysis.  We 
develop a tool that is capable of calculating precise 
target sets for each pointer reference. This tool set 
is independent of the pointer analysis used in a 
compiler.   

• The impact of the pointer analysis on compiler 
optimizations. We feed the target sets collected at 
runtime back into the ORC compiler to help later 
analyses and optimizations, and measure the 
performance improvement on Itanium. It provides 
a very direct way to study the impact of naming 
schemes and granularity on performance. 

The rest of the paper is organized as follows: 
The background knowledge of points-to analysis is 
introduced in the next section. Section 3 and section 
4 describe, in detail , how the instrumentation and 
profili ng tool works, and how the runtime results are 
fed back to the ORC compiler to evaluate different 
naming schemes and granularity levels. The 
experiment results are presented in section 5. The 
conclusions are presented in section 6. 

2. Background 

In a points-to analysis, memory objects, such as 
variables and heap memory blocks, need their names 
so the compiler can identify them as the targets of 
pointers. A naming scheme sets up a mapping from 
the memory address space to the symbolic name 
space. These naming schemes differ in the way 
memory objects are grouped together, and the names 
assigned to them. As a result, the naming schemes 
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implicitly determine the granularity of memory 
objects used within the compiler. 

  Global variables have explicit and fixed 
variable names in a program. Therefore, using the 
variable names sets up a precise one-to-one mapping 
between their corresponding memory locations and 
their names. The local variables within a procedure 
also have explicit variable names. But there may be 
many instances of a local variable at runtime if the 
procedure is called recursively. A name for a local 
variable may represent many instances of the variable 
in different procedure instances. However, such 
many-to-one mapping is usually thought as a quite 
precise. 

  Heap memory objects have no explicit names 
assigned to them in the program. The number of 
memory blocks allocated at runtime by the malloc() 
function is unknown at compile time. The compiler 
has to group those heap memory blocks and assigns 
them a name to facilitate points-to analysis.  

These anonymous memory objects created by all 
of the malloc() functions in the program could be 
assigned the same name[26]. If that is the case, all 
references accessing to any memory block allocated 
by the malloc() are aliases. This obviously is not very 
desirable. Hence, the compiler often assigns names to 
memory blocks according to the line number of the 
statement which contains malloc() function in the 
program. This allows memory blocks allocated at 
different call sites of the malloc() function to have 
different names, and hence, be treated as different 
points-to targets. This is significantly better than the 
previous naming scheme. However, if the malloc() 
function is called within the procedure X, and the 
procedure X is called several times at different call 
sites. All of the memory blocks allocated at different 
call sites of procedure X will have the same name.  

To avoid such a problem, the compiler can also 
assign a name according to the calling path at the 
invocation site of the malloc() function in addition to 
the line number [10]. For example, if procedure X 
calls procedure Y which in turn calls procedure Z, 
and a malloc() is called within procedure Z. The 
memory blocks allocated by the malloc() can be 
assigned a name according to its calling path X-Y-Z 
in addition to its line number. To control the 
complexity of such a naming scheme, the compiler 
can use only the last n procedures of a calling path in 
its naming scheme. In the last example, if n=2, Y-Z 
will be used. Different n will thus give different 
levels of granularity to the named memory objects.  

 When a memory object is a structure type with 
many fields, the granularity of the memory object can 
be made even finer by considering each of its field as 
a different memory object. As a result, two pointers 
that point to different fields of a memory object of 
the structure type can be distinguished. However, 
since C is not a strong-typed language, type casting 

has to be monitored carefully when fields are 
considered. Notice that the naming of the 
dynamically allocated memory blocks and separating 
the fields of the structure-type memory objects are 
orthogonal, i.e. they can be used independently in 
determining the granularity of memory objects. 

 In the following discussion, the granularity 
level, G, of a naming scheme will be represented by 
these two considerations. For example, G=n means 
that the last n procedures in the calling path are used, 
but fields are not considered. When n=0, it is the 
degenerate case of assigning the entire heap space 
with only one name; when n=1, only the line number 
is used. G=nf means the fields are also considered in 
addition to the calling path. 

3. Target sets in different naming 
schemes 

3.1. Overview 

We developed an instrumentation and profiling 
tool to simulate different naming schemes and collect 
their target sets of indirect references. Our approach 
takes advantage of the fact that the addresses of 
memory objects and references are all available at 
runtime. 

The selected naming scheme is simulated by 
setting up a mapping at runtime from the addresses of 
memory objects to their names according to the 
naming scheme. Targets of a pointer are identified by 
looking up the mapping with the addresses of the 
references to their names. The target sets thus 
obtained represent approximately the best results that 
these naming schemes and pointer analyses can be 
expected to achieve.  

To facilitate the lookup process, shadows are 
used to record the address-name mapping. There are 
three contiguous data segments in a program: the 
global variable segment, the heap memory segment 
and the local variables segment. A library routine for 
system memory allocation is provided to assure that 
the heap space is allocated in a compact space so as 
to keep the shadow space for heap compact. A 
corresponding shadow entry in the shadow segment 
is assigned to each of the memory blocks allocated. 
The sizes of the shadow segments can be 
dynamically adjusted to be large enough to hold the 
address-name mapping for all of the memory blocks 
allocated at runtime. The name of a memory object is 
stored in its shadow entry in the shadow segment 
with the same offset as that in the data segment (see 
Figure 1). As a result, the offset can be used in the 
lookup process to quickly locate the shadow entry 
that stores the name. Such a shadow data structure 
makes its modification very easy - just overwrite the 
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old value and no delete operation is needed.  
However, this method doubles the size of memory 
required by a program. 

program data space name mapping in shadow space

address

offset

name

 

Figure 1: The shadow for naming schemes 

There are several advantages using this 
approach. First, this tool provides a uniform platform 
to study the granularity of the points-to analysis. The 
effectiveness of different granularity levels can be 
compared using this framework. It is much easier to 
develop such a profili ng tool than to implement 
different naming schemes and pointer analyses in a 
real compiler. Secondly, the precise target sets for 
each naming scheme can be collected at runtime. 
These results are roughly the best any compiler 
implementation can be expected to achieve. Hence, 
the obtained results do not depend on the quality of 
the implementation of these naming schemes and 
points-to analyses in a real compiler. This is a very 
significant advantage especially because the results 
of an inter-procedural points-to analysis are heavily 
dependent on how it is implemented. The third 
advantage is that the results of our measurements can 
be fed back to the ORC compiler, and we can study 
their actual impact on the other analyses and the 
optimization phases that are the clients of the points-
to analysis. The fourth advantage is that we can study 
the potential performance improvement on a real 
machine, i.e. Itanium, not on a simulator. 

However, such a profili ng method also has its 
limitations. Since our results are collected during 
runtime, they could be input dependent and the 
coverage of the program limits our studies only to the 
parts that are actually executed at runtime. With the 
measurements from a suite of benchmarks and the 
focus of the study is not on a particular program, we 
believe that the results of our study can reflect the 
general characteristics of real applications.  

Our profili ng tool has two major components: an 
instrumentation tool developed on the Intel's ORC 
compiler [14], and a set of library routines written in 
C. Application programs are first instrumented by the 
modified ORC compiler to insert calls to the library 
routines. Then at runtime, these library routines 

simulate different naming schemes and collect the 
target sets of indirect references. 

3.2. Instrumentation 

The instrumentation tool in the ORC compiler 
inserts function calls to invoke our library routines to 
generate and process traces. They simulate different 
naming schemes for every memory object, and 
calculate target sets for every indirect reference. We 
describe some of the details in the followings: 
•  Procedure calls. At every entrance and exit of a 

procedure call i n the program, a library call i s 
inserted with the call site ID of the procedure 
passed as one of the parameters. The call site ID is 
pushed into or popped out of the calli ng path stack 
to maintain the current calli ng path. 

�
 Memory objects. When a memory object becomes 
alive, a library call is inserted with the starting 
address, the length, and the name (for variables 
only) of the memory object passed as its 
parameters. The name of the variables helps us to 
identify which variable is actually referenced 
when the runtime results are fed back to the 
compiler. The way a name is assigned to a heap 
memory block is determined by the selected 
naming scheme. This library call sets up the 
mapping from the addresses of this memory object 
to its name by writing the name in the 
corresponding shadow entry. The number of 
entries to be written is determined by the size of 
this memory object. Global variables, local 
variables and heap memory blocks are 
instrumented differently: 

�
 Global variables become alive at the beginning of 
a program. The mapping of global variables is 
initialized only once when the program starts.  
Scope may be an issue for global variables. Global 
variables are visible only in the files in which they 
are declared. The initialization procedure for 
global variables is instrumented in each file as a 
new procedure at the end of the file, and these 
procedures are invoked at the beginning of the 
main function. The starting address of a global 
variable can be accessed by the address-of 
operation. The length is determined by the type. 
•  Local variables become alive each time the 

procedures in which they reside are called. The 
address for a local variable may not remain the 
same for each invocation of the procedure. 
Therefore, we have to insert library function 
calls at the beginning of each procedure to set 
up the address-name mapping for local 
variables. Variables can be ignored if their 
addresses are not taken. The starting address of 
a local variable can be accessed by the address-
of operation. 
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•  Heap memory blocks become alive when they 
are allocated through calls to system memory 
allocation functions, such as malloc() and 
calloc(). Library function calls are insert after 
these functions. The starting address is the 
return value of the memory allocation function, 
and the size of the memory blocks can be 
obtained from the parameters of these memory 
allocation functions. 

•  Indirect references. Each indirect memory 
reference is instrumented with its address and the 
reference ID passed as parameters to the library 
function call i n order to collect its target set at 
runtime. 

•  Typecast. The instrumentation of type cast is 
needed only when we want to identify the type of 
a memory object. The instrumentation tool also 
generates a file to describe the layout of each 
structure type. Therefore, the heap memory blocks 
for data structures with fields can be sliced into 
smaller objects according to their fields. 

3.3. Assign Names 

Global and local variables already have their 
given names. Hence, there is no need to assign names 
to them. For heap memory blocks, we simulate 
naming schemes by using different lengths of the 
calli ng path. The calli ng path stack is maintained by 
instrumented library functions. When a heap memory 
block is allocated, the top n elements in the calli ng 
path stack are checked, if G=n. 

When the fields are considered, the field ID 
associated with the name assigned to the memory 
object is written into the shadow. The 
instrumentation tool generates a file to describe the 
layout of each structure type to help break down 
memory objects to their fields. 

For example, there is a memory object, and its 
name determined by the calling path is g_name. The 
memory object’s starting address is addr_start and its 
size is object_size.  If this memory object is of 
structure type or array of structure type, the kth field 
of this memory object will be assigned the name  
(g_name, k). Assume the offset and the size of this 
field are offset and field_size, and the size of the 
structure is struct_size.  To set up the mapping, all 
address, addr, in this memory object will be given 
name (g_name, k), when the following two 
conditions hold. 
1. addr_start ≤ addr < addr_start+object_size  
2. offset ≤ (addr-starting) mod struct_size < offset+ 

field_size.  
When references accessing different fields of this 

memory, the targets can be distinguished because 
they have different field IDs. 

3.4. Collect target sets 

The target of each instance of reference is 
collected by looking up the shadow with the address 
value of the reference. The target set of a reference is 
accumulated according to the reference ID and stored 
in a hash table. 

The target sets computed by the tool are flow 
sensitive and path sensitive. Only the targets that can 
reach a reference at runtime are put into its target set. 
The previous value of a pointer is overwritten after 
the pointer is re-assigned.  The possible targets in 
not-taken branches are also ignored. 

If we want to make the target sets context 
insensitive, targets coming from different calling 
contexts are not distinguished and are stored together. 
We can also make the target sets context sensitive by 
attaching each target a tag to indicate its call site. 
However, our evaluation method requires calling 
context insensitive results, because it is not directly 
supported in the ORC compiler to generate multiple 
versions for different calling contexts. 

4. Evaluate naming schemes 

The effectiveness of naming schemes is 
evaluated by feeding the target sets collected at 
runtime back to the ORC compiler, and observing the 
changes in the alias queries and in the performance of 
the generated code. The optimizations in the ORC 
compiler are used as typical clients of the points-to 
analysis. 

4.1. The ORC compiler 

The Open Research Compiler, or the ORC 
compiler [14], originated from the Pro64 compiler 
[19] developed by the Silicon Graphic Inc. The ORC 
compiler is for C, C++ and Fortran90. It has most of 
the analyses and optimizations available in modern 
compilers. It performs pointer analyses, scalar 
optimizations, loop transformations, inter-procedural 
analyses, and code generation. Profiling and 
feedback-directed optimizations are also supported 
by this compiler. 

There are three stages of analysis for each 
procedure: loop-nest optimizations (LNO), scalar 
global optimizations (WOPT), and code generation 
optimizations (CG). The LNO stage does loop related 
optimizations [23], such as parallelization, and 
unimodular transformations. The WOPT stage 
contains some general optimizations, such as partial 
redundancy elimination [22], copy propagation and 
strength reduction. The CG stage focuses on 
generating optimized binary code. The inter-
procedural analysis is supported by the IPA 
component.  



 6 

The pointer analysis in the ORC compiler starts 
from a flow-free pointer analysis, which is similar to 
Steengaard's algorithm [8]. This pointer analysis is 
done inter-procedurally when the inter-procedural 
analysis is turned on. A flow-sensitive pointer 
analysis is then applied intra-procedurally to get more 
precise results. Some simple rules, such as the 
address-taken rule, are used to help alias analysis. 
The alias information stored in the internal 
representations is maintained across different stages. 

When using the ORC compiler as a base for 
comparison, we try to tune the compiler so that the 
best results could be brought about by the change of 
the naming scheme. The optimization level is always 
set at O3.  The inter-procedure analysis is turned off , 
because the current version of the ORC compiler has 
unstable inter-procedural analysis which may fail i n 
some benchmarks. Therefore the result of ORC 
compiler just represents the capabilit y of a practical 
compiler, not a state-of-art compiler.  However, the 
moderate pointer analysis in the ORC compiler 
actually makes the changes in granularity clear If the 
ORC had very powerful pointer analysis, it is unclear 
where the pointer analysis is overdone.  

4.2. Feedback 

The target sets of indirect references are fed back 
to the ORC compiler. The target sets may be different 
when different naming schemes are used, and thus 
the results of the optimizations in the compiler may 
be different. Two things are measured: the 
performance of the generated code on Itanium, and 
the results of alias queries within the optimization 
phases. 

The changes in the performance on Itanium 
directly reflect the impact of different naming 
schemes in the ORC compiler. However, the 
performance changes are determined by many 
factors. In this study, we also measure the changes in 
the result of alias queries in the optimization phases, 
which somewhat reflect the subtle changes in the 
pointer analysis. 

The major optimizations are done in the WOPT 
and CG stages. In order to feed back to different 
stages, the instrumentation is done at different stages 
so that the feedback information can match. The 
instrumentation is also done incrementally because 
the impact of the feedback to WOPT should be 
considered when the instrumentation at CG is done. 
The target sets collected at runtime by the profili ng 
tool are fed back to the two stages, replacing the alias 
analysis result produced by the ORC compiler. In the 
WOPT stage, the static single assignment (SSA) form 
[20] is generated based on the target sets fed back 
from the runtime. Many optimizations in WOPT, 
such as partial redundant elimination and dead code 

elimination, are built upon the SSA form. In the CG 
stage, the results of alias queries are also replaced by 
the target sets fed back from the runtime. We 
instrument the ORC compiler to record the changes 
in alias queries. 

The profili ng information is limited to the 
portions in a program that is reached during the 
execution. There is no alias information for the 
references that are not reached at runtime. These 
references are conservatively assumed to be aliased 
with all other references. 

5. Experiment Results 

Experiments are conducted on the SPEC 
CPU2000 integer benchmarks.  First, the distribution 
of the results of alias queries in the ORC compiler is 
reported. Then each benchmark is instrumented, and 
target information for each indirect references at 
different granularity levels are collected at runtime. 
The benchmarks are compiled again with the 
collected alias information. Due to the improved alias 
information, some alias queries which used to return 
may alias now return no alias. The changes of alias 
queries are reported again to show the impact of 
pointer analysis with different granularities. Finally, 
the compiled benchmarks are executed again to 
measure  the impact on   execution time.  

5.1. Alias queries 

As in typical compilers, an alias query in the 
ORC compiler returns one of the following three 
results: not alias, same location, and may alias. The 
first two cases are accurate results, while the third 
one , may alias, is conservative and could be 
improved by more precise pointer analyses. Since a 
pointer expression references either a variable or a 
heap memory block, the alias pairs that return may 
alias can be further classified into:  three categories: 
between two  variables (v-v), between a variable and 
a heap memory object (v-h), and between two heap 
memory blocks (h-h).  Figure 2 shows the 
distribution of the returned values from the original 
ORC compiler. On average, the queries which return 
may alias accounts for 54.4% of all queries. This high 
percentage indicates that there could be great 
potential for improvements. As shown in Figure 2, 
the majority of the may alias queries are related to 
heap memory blocks. Although there are frequent v-h 
(variable to heap objects) type queries returning may 
alias, many of them should be turned into no alias by 
a stronger inter-procedural pointer analysis.  For the 
rest of aliases among heap blocks, the following 
experiments are conducted to study the impact of 
granularity levels on pointer analyses.  
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Figure 2: Distribution of the result of alias queries 
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G = 0: all heap memory blocks are given one name. 
G=1, 2, 3: the calli ng path of length 1, 3 or 3 is used to name the heap memory blocks.  
G=a: the whole calli ng path is used to name the heap memory blocks. 
G=m: the user memory management function is recognized to name the heap memory blocks. 

Figure 3: Percentage of no-alias queries changed with granularity 

 

5.2. Query enhanced by feedback 

After program instrumentation and runtime 
collection of target sets information, the benchmarks 
are compiled with the ORC compiler again. This 
time, the ORC compiler is provided with target 

information for pointer expressions collected from 
instrumented runs. Now the ORC compiler is able to 
give more accurate answers to alias queries. Some 
queries that used to return may alias now may return 
no alias. The percentage of the changes is reported in 
Figure 3. The queries involving un-reached 
references are excluded.  

There are several observations based on 
Figure 3. 
•  There are more than 30% improvements even 

when  G is 0. The reason is  that the ORC 
compiler uses a default symbol to represent all 
memory objects outside of a  procedure to 
simpli fy inter-procedural analysis. Such 
granularity is too coarse. A normal inter-
procedural points-to analysis can do much 
better. .  

•  For most of the benchmarks, except for bzip2 
and mcf, heap memory analysis with line 
number (G=1) does not improve much. 
However, for twolf and vpr, G=2 greatly 
reduces the number of may alias. Further 
increase of the calli ng path for heap pointer 
analysis (G=3) makes littl e difference.    

•  G=a does not bring further improvements. 
Therefore, there are littl e incentives to 
consider very long calli ng path. Some simple 
analyses, for example, suggested in Intel’s 
compiler group [12], are suff icient. 

5.3. User managed memory 

In the benchmark gap and parser, the pointer 
analysis is insensitive to the naming scheme for 
heap memory objects. The reason is that the heap 
memory space is managed by programmers. 
Therefore, the calli ng path of system memory 
allocation does not help. If the functions in 
which the user manages the heap memory can be 
recognized, our tool can treat them like malloc(). 
For example, after we explicitly recognize user 
managed memory allocation functions, the query 
improvement improved drastically from 30.8 % 
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to 82.2% in gap, and from 29.9% to 68.4% in 
parser.  See G=m in Figure 3. 

Although the user managed memory 
allocation functions are very difficult, if not 
impossible, for compiler to recognize them. The 
major difficulty is to trace the size of memory 
space accessed through each pointer so that the 
no overlap can be proved. For programs with 
user managed memory allocation functions, 
speculation or dynamic optimization may be 
needed.  

5.4. Fields of heap memory blocks 

The fields can affect the pointer analysis in 
two ways: 1) the pointer analysis can distinguish 
the points-to sets of different fields that are 
defined as pointer type; and 2) the pointer 
analysis can distinguish the targets pointing to 
different fields of a structure. In our approach, 
the target sets collected at runtime have the same 
effects as considering fields in points-to set. 
Whether to consider fields in target sets is 
another potential variation.  

It is easy to  divide a structured variable into 
finer granularity using their type definition. 
However, there is no data type defined for heap 
memory blocks. They can be divided into finer 
granularity using their fields of structure type 
only when the memory blocks with the same 
name are cast to and used as the same type. The 
type casting of heap memory blocks are traced to 
identify conditions in which this analysis is 
applicable.  The naming scheme could be based 
on G=1 or G=2, or G=m such that the heap 
memory blocks in the same group have the same 
type. We represented such granularity as G=hf. 

 The change of queries when fields are 
considered is reported in Figure 4. By comparing 
the result of G=0 and G=0f, and comparing the 
result of G=h and G=hf, it can be observed that it 
is important for pointer analysis to consider the 
fields of both variables and heap memory blocks.  

5.5. Performance enhanced by profiling 

Pointer analyses at finer granularity might 
significantly improve the results of alias queries. 
It is also interesting to know what would be the 
impact on the actual optimizations. In this 
section, the target sets collected at runtime are 
fed back to the WOPT and the CG phases in the 
ORC compiler. Optimizations in the two phases 
are performed with the feedback information, 
and thus improved results of alias queries. The 
performance improvement of the benchmark is 
shown in Figure 5. After the user memory 
management functions are recognized in gap and 
parser, the performance improvement is 20.1% 
and 12.3%, respectively. 

The performance improvement is in 
proportion to the improvement to alias queries to 
a lower less a degree. The performance gain of 
an optimization may depend on many other 
analyses and the characteristic of the code. 
Therefore, the improvements of alias queries 
may not always contribute to overall 
performance.  Half of the benchmarks achieved 
more than 10% of improvement in performance 
with finer granularity.  

6. Conclusions 

We conduct a comprehensive study on the 
naming schemes and the granularity of the 
pointer analysis. We implement a set of 
instrumentation and profiling tools to study 
issues related to pointer analysis.  Each 
benchmark is instrumented with our tool to 
collect target sets information at runtime. Such 
target sets information is fed back into the ORC 
compiler automatically to help later analyses and 
optimizations. This approach provides a direct 
way to study the impact of naming schemes and 
granularity on performance. 
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bzip2 crafty gap mcf parser twolf vpr
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Figure 4: Percentage of no-alias queries changed with field granularity 
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Figure 5: Performance improvement for different granularity levels 

 

Our experiment results suggest that pointer 
analysis for heap memory blocks may yield a 
good return. The commonly used naming 
scheme that names memory objects with the 
statement line number of the malloc() function 
call improves only slightly over the approach 
that treats heap memory blocks as one entity. 
However, naming such dynamic allocated 
memory objects with respective calli ng path 
contributes more. Some programs have their own 
dynamic memory allocation and management 
routines. It is important for the compiler to 
recognize such routines to enable more effective 
naming schemes.  

By simulating naming schemes with calli ng 
path and field information, the point-to 
information provided to the ORC compiler 
greatly improves the results of alias queries. The 
improved results from alias queries in turn 
significantly increase the effectiveness of 
compiler optimizations. Since the point-to 
information fed back to the compiler is collected 
at runtime, this approach may not be used 
directly to generate real code. However, it 
provides a useful guideline to the potential of 
pointer analyses at finer granularity. 
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