
 1

An Empirical Study on the Granularity of Pointer Analysis in C Programs

Tong Chen, Jin Lin, Wei-Chung Hsu and Pen-Chung Yew

Department of Computer Science, University of Minnesota

tchen, jin, hsu, yew@cs.umn.edu

Abstract
 Pointer analysis plays a critical role in modern

C compilers because of the frequent appearances of
pointer expressions. It is even more important for
data dependence analysis, which is essential in
exploiting parallelism, because complex data
structures such as arrays are often accessed through
pointers in C. One of the important aspects of
pointer analysis methods is their granularity, the way
in which the memory objects are named for analysis.
The naming schemes used in a pointer analysis affect
its effectiveness, especially for pointers pointing to
heap memory blocks. In this paper, we present a new
approach that applies the compiler analysis and
profili ng techniques together to study the impact of
the granularity in pointer analyses. An
instrumentation tool, based on the Intel’s Open
Resource Compiler (ORC), is devised to simulate
different naming schemes and collect precise target
sets for indirect references at runtime. The collected
target sets are then fed back to the ORC compiler to
evaluate the effectiveness of different granularity in
pointer analyses. The change of the alias queries in
the compiler analyses and the change of performance
of the output code at different granularity levels are
observed. With the experiments on the SPEC
CPU2000 integer benchmarks, we found that 1) finer
granularity of pointer analysis show great potential
in optimizations, and may bring about up to 15%
performance improvement, 2) the common naming
scheme, which gives heap memory blocks names
according to the line number of system memory
allocation calls, is not powerful enough for some
benchmarks. The wrapper functions for allocation or
the user-defined memory management functions have
to be recognized to produce better pointer analysis
result, 3) pointer analysis of fine granularity requires
inter-procedural analysis, and 4) it is also quite
important that a naming scheme distinguish the fields
of a structure in the targets.

1. Introduction

The pervasive use of pointer expressions in C
programs has created a serious problem for the C

compilers. Without proper pointer analyses,
compilers would not have accurate knowledge of
what memory objects may have been accessed by
indirect references. Consequently, many other
important analyses, such as data dependence analysis
on arrays and complex data structures, may suffer
from the conservative assumptions about the targets
of pointers. Hence, pointer analysis plays a critical
role in C compilers in exploiting parallelism [12]. It
provides the analysis base for other analysis and
parallelizing techniques.

 Many pointer analysis methods have been
proposed ([1, 2, 3]). Among all the pointer analyses,
the points-to analysis [2, 4, 5, 6, 7, 8, 9, 10, 15] is the
most widely used. A points-to analysis aims to
produce a set of potential targets for each indirect
reference so that the alias relationship among pointers
can be determined by comparing their target sets.
Efforts have been put in searching for a good points-
to analysis [11, 12, 13, 21].

The effectiveness of a pointer analysis is
generally determined by two factors: the algorithm
used, and the granularity of the points-to targets
specified in the compiler. For example, the
algorithms used by compilers may have different
flow-sensitivity or context sensitivity. The algorithm
may also be applied inter-procedurally or only intra-
procedurally.

To calculate the target sets, the address space of
memory objects in a program should first be assigned
names. The granularity of the names represents the
precision of the naming schemes used in pointer
analysis. Different naming schemes may lead to
different granularity in pointer analyses. In general,
there are two types of memory objects: the local or
global variables defined in the program, and heap
memory blocks allocated at runtime. The pointers
that point to global or local variables are called stack-
oriented pointers; and the pointers that point to
memory blocks are called heap-oriented pointers [5].
For heap-oriented pointers, their target objects are
anonymous. Compilers have to assign them names
internally before the target sets could be calculated.
For example, if the compiler assigns the entire heap
space with only one name, the entire heap space will

 2

be viewed as only one large memory object. All of
the pointers point to different memory locations in
the heap space will have the same target in their
target sets, and they will all be aliases. On the other
hand, for stack-oriented pointers, global and local
variables usually have explicitly given variable
names in the program, and with well -defined types.
However, if the compiler treats an entire data
structure with many fields as a single memory object,
all of the pointers point to the different fields of the
data structure will be aliases.

The granularity of the target objects and its
related naming schemes not only affect the results of
a pointer analysis, but also the eff iciency of its
algorithm. Finer granularity will allow better
distinction among different memory objects, and
hence, fewer aliases. However, it may lead to a larger
name space and possibly larger target set sizes, and
hence, longer time and more storage requirement for
a points-to analysis.

Various naming schemes have been proposed in
the past [10, 16, 24, 27, 28]. For anonymous heap
memory objects, the place where they are allocated is
used to name them. For memory objects of structure
type, the field names may be used in their names.
Some experiments have been done [25, 29] and
showed the importance of proper naming methods.
However a comprehensive study on the impact of the
granularity on pointer analysis has not been done.
Most of the previous studies focus primarily on the
algorithms. One reason is that it is not trivial to
implement different naming schemes in conjunction
with various pointer analysis algorithms. Another
reason is that the heap memory objects have not
received enough attention in the past. In most
compilers, only very simple naming schemes are
used for heap memory blocks. However, a recent
study shows that the number of heap-oriented
pointers is quite significant in most SPEC CPU2000
programs [17]. Hence, it is important to look at the
impact of naming schemes and the granularity on the
pointer analysis and the optimizations that use the
results of the pointer analysis.

In this paper, we study this problem using a new
approach that combines the profili ng techniques and
the compiler analysis. We developed an
instrumentation and profili ng tool set based on the
Intel’s Open Research Compiler (ORC) [14].
Different naming schemes are simulated and the
precise target sets of indirect references (e.g.
pointers) are collected at runtime for the points-to
analysis. We then feed the results of the points-to
analysis back to the ORC compiler. The
improvement on the results of alias queries in other
compiler analysis and optimizations and the
performance of the code thus generated are also
measured. Our experiments are conducted on SPEC

CPU2000 integer benchmarks and on Intel Itanium
computers.

The suggested approach does not have to
implement pointer analyses with different granularity
in a compiler. It is much easier to simulate these
analyses with a runtime tool. The points-to set
collected by this tool is an upper bound result and
reveals the potential of different granularity. Using
the optimizations in the ORC compiler as consumers
makes the measurement of effectiveness meaningful.
However, we have to admit that some import issues,
such as the impact of the algorithm, are not covered
in this paper.

The main contributions of this paper include:
• A comprehensive study on the naming schemes

and the granularity of the pointer analysis. We
found that the widely used simple naming schemes
are inadequate. Wrapper functions and self-
management functions that contain system
memory allocation functions (such as malloc())
need to be carefully analyzed. It is also important
for a pointer analysis to consider the fields of a
data structure.

• A set of instrumentation and profili ng tools to
study issues related to pointer analysis. We
develop a tool that is capable of calculating precise
target sets for each pointer reference. This tool set
is independent of the pointer analysis used in a
compiler.

• The impact of the pointer analysis on compiler
optimizations. We feed the target sets collected at
runtime back into the ORC compiler to help later
analyses and optimizations, and measure the
performance improvement on Itanium. It provides
a very direct way to study the impact of naming
schemes and granularity on performance.

The rest of the paper is organized as follows:
The background knowledge of points-to analysis is
introduced in the next section. Section 3 and section
4 describe, in detail , how the instrumentation and
profili ng tool works, and how the runtime results are
fed back to the ORC compiler to evaluate different
naming schemes and granularity levels. The
experiment results are presented in section 5. The
conclusions are presented in section 6.

2. Background

In a points-to analysis, memory objects, such as
variables and heap memory blocks, need their names
so the compiler can identify them as the targets of
pointers. A naming scheme sets up a mapping from
the memory address space to the symbolic name
space. These naming schemes differ in the way
memory objects are grouped together, and the names
assigned to them. As a result, the naming schemes

 3

implicitly determine the granularity of memory
objects used within the compiler.

 Global variables have explicit and fixed
variable names in a program. Therefore, using the
variable names sets up a precise one-to-one mapping
between their corresponding memory locations and
their names. The local variables within a procedure
also have explicit variable names. But there may be
many instances of a local variable at runtime if the
procedure is called recursively. A name for a local
variable may represent many instances of the variable
in different procedure instances. However, such
many-to-one mapping is usually thought as a quite
precise.

 Heap memory objects have no explicit names
assigned to them in the program. The number of
memory blocks allocated at runtime by the malloc()
function is unknown at compile time. The compiler
has to group those heap memory blocks and assigns
them a name to facilitate points-to analysis.

These anonymous memory objects created by all
of the malloc() functions in the program could be
assigned the same name[26]. If that is the case, all
references accessing to any memory block allocated
by the malloc() are aliases. This obviously is not very
desirable. Hence, the compiler often assigns names to
memory blocks according to the line number of the
statement which contains malloc() function in the
program. This allows memory blocks allocated at
different call sites of the malloc() function to have
different names, and hence, be treated as different
points-to targets. This is significantly better than the
previous naming scheme. However, if the malloc()
function is called within the procedure X, and the
procedure X is called several times at different call
sites. All of the memory blocks allocated at different
call sites of procedure X will have the same name.

To avoid such a problem, the compiler can also
assign a name according to the calling path at the
invocation site of the malloc() function in addition to
the line number [10]. For example, if procedure X
calls procedure Y which in turn calls procedure Z,
and a malloc() is called within procedure Z. The
memory blocks allocated by the malloc() can be
assigned a name according to its calling path X-Y-Z
in addition to its line number. To control the
complexity of such a naming scheme, the compiler
can use only the last n procedures of a calling path in
its naming scheme. In the last example, if n=2, Y-Z
will be used. Different n will thus give different
levels of granularity to the named memory objects.

 When a memory object is a structure type with
many fields, the granularity of the memory object can
be made even finer by considering each of its field as
a different memory object. As a result, two pointers
that point to different fields of a memory object of
the structure type can be distinguished. However,
since C is not a strong-typed language, type casting

has to be monitored carefully when fields are
considered. Notice that the naming of the
dynamically allocated memory blocks and separating
the fields of the structure-type memory objects are
orthogonal, i.e. they can be used independently in
determining the granularity of memory objects.

 In the following discussion, the granularity
level, G, of a naming scheme will be represented by
these two considerations. For example, G=n means
that the last n procedures in the calling path are used,
but fields are not considered. When n=0, it is the
degenerate case of assigning the entire heap space
with only one name; when n=1, only the line number
is used. G=nf means the fields are also considered in
addition to the calling path.

3. Target sets in different naming
schemes

3.1. Overview

We developed an instrumentation and profiling
tool to simulate different naming schemes and collect
their target sets of indirect references. Our approach
takes advantage of the fact that the addresses of
memory objects and references are all available at
runtime.

The selected naming scheme is simulated by
setting up a mapping at runtime from the addresses of
memory objects to their names according to the
naming scheme. Targets of a pointer are identified by
looking up the mapping with the addresses of the
references to their names. The target sets thus
obtained represent approximately the best results that
these naming schemes and pointer analyses can be
expected to achieve.

To facilitate the lookup process, shadows are
used to record the address-name mapping. There are
three contiguous data segments in a program: the
global variable segment, the heap memory segment
and the local variables segment. A library routine for
system memory allocation is provided to assure that
the heap space is allocated in a compact space so as
to keep the shadow space for heap compact. A
corresponding shadow entry in the shadow segment
is assigned to each of the memory blocks allocated.
The sizes of the shadow segments can be
dynamically adjusted to be large enough to hold the
address-name mapping for all of the memory blocks
allocated at runtime. The name of a memory object is
stored in its shadow entry in the shadow segment
with the same offset as that in the data segment (see
Figure 1). As a result, the offset can be used in the
lookup process to quickly locate the shadow entry
that stores the name. Such a shadow data structure
makes its modification very easy - just overwrite the

 4

old value and no delete operation is needed.
However, this method doubles the size of memory
required by a program.

program data space name mapping in shadow space

address

offset

name

Figure 1: The shadow for naming schemes

There are several advantages using this
approach. First, this tool provides a uniform platform
to study the granularity of the points-to analysis. The
effectiveness of different granularity levels can be
compared using this framework. It is much easier to
develop such a profili ng tool than to implement
different naming schemes and pointer analyses in a
real compiler. Secondly, the precise target sets for
each naming scheme can be collected at runtime.
These results are roughly the best any compiler
implementation can be expected to achieve. Hence,
the obtained results do not depend on the quality of
the implementation of these naming schemes and
points-to analyses in a real compiler. This is a very
significant advantage especially because the results
of an inter-procedural points-to analysis are heavily
dependent on how it is implemented. The third
advantage is that the results of our measurements can
be fed back to the ORC compiler, and we can study
their actual impact on the other analyses and the
optimization phases that are the clients of the points-
to analysis. The fourth advantage is that we can study
the potential performance improvement on a real
machine, i.e. Itanium, not on a simulator.

However, such a profili ng method also has its
limitations. Since our results are collected during
runtime, they could be input dependent and the
coverage of the program limits our studies only to the
parts that are actually executed at runtime. With the
measurements from a suite of benchmarks and the
focus of the study is not on a particular program, we
believe that the results of our study can reflect the
general characteristics of real applications.

Our profili ng tool has two major components: an
instrumentation tool developed on the Intel's ORC
compiler [14], and a set of library routines written in
C. Application programs are first instrumented by the
modified ORC compiler to insert calls to the library
routines. Then at runtime, these library routines

simulate different naming schemes and collect the
target sets of indirect references.

3.2. Instrumentation

The instrumentation tool in the ORC compiler
inserts function calls to invoke our library routines to
generate and process traces. They simulate different
naming schemes for every memory object, and
calculate target sets for every indirect reference. We
describe some of the details in the followings:
• Procedure calls. At every entrance and exit of a

procedure call i n the program, a library call i s
inserted with the call site ID of the procedure
passed as one of the parameters. The call site ID is
pushed into or popped out of the calli ng path stack
to maintain the current calli ng path.

�
 Memory objects. When a memory object becomes
alive, a library call is inserted with the starting
address, the length, and the name (for variables
only) of the memory object passed as its
parameters. The name of the variables helps us to
identify which variable is actually referenced
when the runtime results are fed back to the
compiler. The way a name is assigned to a heap
memory block is determined by the selected
naming scheme. This library call sets up the
mapping from the addresses of this memory object
to its name by writing the name in the
corresponding shadow entry. The number of
entries to be written is determined by the size of
this memory object. Global variables, local
variables and heap memory blocks are
instrumented differently:

�
 Global variables become alive at the beginning of
a program. The mapping of global variables is
initialized only once when the program starts.
Scope may be an issue for global variables. Global
variables are visible only in the files in which they
are declared. The initialization procedure for
global variables is instrumented in each file as a
new procedure at the end of the file, and these
procedures are invoked at the beginning of the
main function. The starting address of a global
variable can be accessed by the address-of
operation. The length is determined by the type.
• Local variables become alive each time the

procedures in which they reside are called. The
address for a local variable may not remain the
same for each invocation of the procedure.
Therefore, we have to insert library function
calls at the beginning of each procedure to set
up the address-name mapping for local
variables. Variables can be ignored if their
addresses are not taken. The starting address of
a local variable can be accessed by the address-
of operation.

 5

• Heap memory blocks become alive when they
are allocated through calls to system memory
allocation functions, such as malloc() and
calloc(). Library function calls are insert after
these functions. The starting address is the
return value of the memory allocation function,
and the size of the memory blocks can be
obtained from the parameters of these memory
allocation functions.

• Indirect references. Each indirect memory
reference is instrumented with its address and the
reference ID passed as parameters to the library
function call i n order to collect its target set at
runtime.

• Typecast. The instrumentation of type cast is
needed only when we want to identify the type of
a memory object. The instrumentation tool also
generates a file to describe the layout of each
structure type. Therefore, the heap memory blocks
for data structures with fields can be sliced into
smaller objects according to their fields.

3.3. Assign Names

Global and local variables already have their
given names. Hence, there is no need to assign names
to them. For heap memory blocks, we simulate
naming schemes by using different lengths of the
calli ng path. The calli ng path stack is maintained by
instrumented library functions. When a heap memory
block is allocated, the top n elements in the calli ng
path stack are checked, if G=n.

When the fields are considered, the field ID
associated with the name assigned to the memory
object is written into the shadow. The
instrumentation tool generates a file to describe the
layout of each structure type to help break down
memory objects to their fields.

For example, there is a memory object, and its
name determined by the calling path is g_name. The
memory object’s starting address is addr_start and its
size is object_size. If this memory object is of
structure type or array of structure type, the kth field
of this memory object will be assigned the name
(g_name, k). Assume the offset and the size of this
field are offset and field_size, and the size of the
structure is struct_size. To set up the mapping, all
address, addr, in this memory object will be given
name (g_name, k), when the following two
conditions hold.
1. addr_start ≤ addr < addr_start+object_size
2. offset ≤ (addr-starting) mod struct_size < offset+

field_size.
When references accessing different fields of this

memory, the targets can be distinguished because
they have different field IDs.

3.4. Collect target sets

The target of each instance of reference is
collected by looking up the shadow with the address
value of the reference. The target set of a reference is
accumulated according to the reference ID and stored
in a hash table.

The target sets computed by the tool are flow
sensitive and path sensitive. Only the targets that can
reach a reference at runtime are put into its target set.
The previous value of a pointer is overwritten after
the pointer is re-assigned. The possible targets in
not-taken branches are also ignored.

If we want to make the target sets context
insensitive, targets coming from different calling
contexts are not distinguished and are stored together.
We can also make the target sets context sensitive by
attaching each target a tag to indicate its call site.
However, our evaluation method requires calling
context insensitive results, because it is not directly
supported in the ORC compiler to generate multiple
versions for different calling contexts.

4. Evaluate naming schemes

The effectiveness of naming schemes is
evaluated by feeding the target sets collected at
runtime back to the ORC compiler, and observing the
changes in the alias queries and in the performance of
the generated code. The optimizations in the ORC
compiler are used as typical clients of the points-to
analysis.

4.1. The ORC compiler

The Open Research Compiler, or the ORC
compiler [14], originated from the Pro64 compiler
[19] developed by the Silicon Graphic Inc. The ORC
compiler is for C, C++ and Fortran90. It has most of
the analyses and optimizations available in modern
compilers. It performs pointer analyses, scalar
optimizations, loop transformations, inter-procedural
analyses, and code generation. Profiling and
feedback-directed optimizations are also supported
by this compiler.

There are three stages of analysis for each
procedure: loop-nest optimizations (LNO), scalar
global optimizations (WOPT), and code generation
optimizations (CG). The LNO stage does loop related
optimizations [23], such as parallelization, and
unimodular transformations. The WOPT stage
contains some general optimizations, such as partial
redundancy elimination [22], copy propagation and
strength reduction. The CG stage focuses on
generating optimized binary code. The inter-
procedural analysis is supported by the IPA
component.

 6

The pointer analysis in the ORC compiler starts
from a flow-free pointer analysis, which is similar to
Steengaard's algorithm [8]. This pointer analysis is
done inter-procedurally when the inter-procedural
analysis is turned on. A flow-sensitive pointer
analysis is then applied intra-procedurally to get more
precise results. Some simple rules, such as the
address-taken rule, are used to help alias analysis.
The alias information stored in the internal
representations is maintained across different stages.

When using the ORC compiler as a base for
comparison, we try to tune the compiler so that the
best results could be brought about by the change of
the naming scheme. The optimization level is always
set at O3. The inter-procedure analysis is turned off ,
because the current version of the ORC compiler has
unstable inter-procedural analysis which may fail i n
some benchmarks. Therefore the result of ORC
compiler just represents the capabilit y of a practical
compiler, not a state-of-art compiler. However, the
moderate pointer analysis in the ORC compiler
actually makes the changes in granularity clear If the
ORC had very powerful pointer analysis, it is unclear
where the pointer analysis is overdone.

4.2. Feedback

The target sets of indirect references are fed back
to the ORC compiler. The target sets may be different
when different naming schemes are used, and thus
the results of the optimizations in the compiler may
be different. Two things are measured: the
performance of the generated code on Itanium, and
the results of alias queries within the optimization
phases.

The changes in the performance on Itanium
directly reflect the impact of different naming
schemes in the ORC compiler. However, the
performance changes are determined by many
factors. In this study, we also measure the changes in
the result of alias queries in the optimization phases,
which somewhat reflect the subtle changes in the
pointer analysis.

The major optimizations are done in the WOPT
and CG stages. In order to feed back to different
stages, the instrumentation is done at different stages
so that the feedback information can match. The
instrumentation is also done incrementally because
the impact of the feedback to WOPT should be
considered when the instrumentation at CG is done.
The target sets collected at runtime by the profili ng
tool are fed back to the two stages, replacing the alias
analysis result produced by the ORC compiler. In the
WOPT stage, the static single assignment (SSA) form
[20] is generated based on the target sets fed back
from the runtime. Many optimizations in WOPT,
such as partial redundant elimination and dead code

elimination, are built upon the SSA form. In the CG
stage, the results of alias queries are also replaced by
the target sets fed back from the runtime. We
instrument the ORC compiler to record the changes
in alias queries.

The profili ng information is limited to the
portions in a program that is reached during the
execution. There is no alias information for the
references that are not reached at runtime. These
references are conservatively assumed to be aliased
with all other references.

5. Experiment Results

Experiments are conducted on the SPEC
CPU2000 integer benchmarks. First, the distribution
of the results of alias queries in the ORC compiler is
reported. Then each benchmark is instrumented, and
target information for each indirect references at
different granularity levels are collected at runtime.
The benchmarks are compiled again with the
collected alias information. Due to the improved alias
information, some alias queries which used to return
may alias now return no alias. The changes of alias
queries are reported again to show the impact of
pointer analysis with different granularities. Finally,
the compiled benchmarks are executed again to
measure the impact on execution time.

5.1. Alias queries

As in typical compilers, an alias query in the
ORC compiler returns one of the following three
results: not alias, same location, and may alias. The
first two cases are accurate results, while the third
one , may alias, is conservative and could be
improved by more precise pointer analyses. Since a
pointer expression references either a variable or a
heap memory block, the alias pairs that return may
alias can be further classified into: three categories:
between two variables (v-v), between a variable and
a heap memory object (v-h), and between two heap
memory blocks (h-h). Figure 2 shows the
distribution of the returned values from the original
ORC compiler. On average, the queries which return
may alias accounts for 54.4% of all queries. This high
percentage indicates that there could be great
potential for improvements. As shown in Figure 2,
the majority of the may alias queries are related to
heap memory blocks. Although there are frequent v-h
(variable to heap objects) type queries returning may
alias, many of them should be turned into no alias by
a stronger inter-procedural pointer analysis. For the
rest of aliases among heap blocks, the following
experiments are conducted to study the impact of
granularity levels on pointer analyses.

 7

Distribution of the result of alias queries

0%

20%

40%

60%

80%

100%

bzip2 crafty gap gzip mcf parser twolf vortex vpr

h-h alias

v-h alias

v-v alias

same

no alias

Figure 2: Distribution of the result of alias queries

0.0%

20.0%

40.0%
60.0%

80.0%

100.0%

bzip2 crafty gap gzip mcf parser twolf vortex vpr

G=0

G=0f

G=h

G=hf

G = 0: all heap memory blocks are given one name.
G=1, 2, 3: the calli ng path of length 1, 3 or 3 is used to name the heap memory blocks.
G=a: the whole calli ng path is used to name the heap memory blocks.
G=m: the user memory management function is recognized to name the heap memory blocks.

Figure 3: Percentage of no-alias queries changed with granularity

5.2. Query enhanced by feedback

After program instrumentation and runtime
collection of target sets information, the benchmarks
are compiled with the ORC compiler again. This
time, the ORC compiler is provided with target

information for pointer expressions collected from
instrumented runs. Now the ORC compiler is able to
give more accurate answers to alias queries. Some
queries that used to return may alias now may return
no alias. The percentage of the changes is reported in
Figure 3. The queries involving un-reached
references are excluded.

There are several observations based on
Figure 3.
• There are more than 30% improvements even

when G is 0. The reason is that the ORC
compiler uses a default symbol to represent all
memory objects outside of a procedure to
simpli fy inter-procedural analysis. Such
granularity is too coarse. A normal inter-
procedural points-to analysis can do much
better. .

• For most of the benchmarks, except for bzip2
and mcf, heap memory analysis with line
number (G=1) does not improve much.
However, for twolf and vpr, G=2 greatly
reduces the number of may alias. Further
increase of the calli ng path for heap pointer
analysis (G=3) makes littl e difference.

• G=a does not bring further improvements.
Therefore, there are littl e incentives to
consider very long calli ng path. Some simple
analyses, for example, suggested in Intel’s
compiler group [12], are suff icient.

5.3. User managed memory

In the benchmark gap and parser, the pointer
analysis is insensitive to the naming scheme for
heap memory objects. The reason is that the heap
memory space is managed by programmers.
Therefore, the calli ng path of system memory
allocation does not help. If the functions in
which the user manages the heap memory can be
recognized, our tool can treat them like malloc().
For example, after we explicitly recognize user
managed memory allocation functions, the query
improvement improved drastically from 30.8 %

 8

to 82.2% in gap, and from 29.9% to 68.4% in
parser. See G=m in Figure 3.

Although the user managed memory
allocation functions are very difficult, if not
impossible, for compiler to recognize them. The
major difficulty is to trace the size of memory
space accessed through each pointer so that the
no overlap can be proved. For programs with
user managed memory allocation functions,
speculation or dynamic optimization may be
needed.

5.4. Fields of heap memory blocks

The fields can affect the pointer analysis in
two ways: 1) the pointer analysis can distinguish
the points-to sets of different fields that are
defined as pointer type; and 2) the pointer
analysis can distinguish the targets pointing to
different fields of a structure. In our approach,
the target sets collected at runtime have the same
effects as considering fields in points-to set.
Whether to consider fields in target sets is
another potential variation.

It is easy to divide a structured variable into
finer granularity using their type definition.
However, there is no data type defined for heap
memory blocks. They can be divided into finer
granularity using their fields of structure type
only when the memory blocks with the same
name are cast to and used as the same type. The
type casting of heap memory blocks are traced to
identify conditions in which this analysis is
applicable. The naming scheme could be based
on G=1 or G=2, or G=m such that the heap
memory blocks in the same group have the same
type. We represented such granularity as G=hf.

 The change of queries when fields are
considered is reported in Figure 4. By comparing
the result of G=0 and G=0f, and comparing the
result of G=h and G=hf, it can be observed that it
is important for pointer analysis to consider the
fields of both variables and heap memory blocks.

5.5. Performance enhanced by profiling

Pointer analyses at finer granularity might
significantly improve the results of alias queries.
It is also interesting to know what would be the
impact on the actual optimizations. In this
section, the target sets collected at runtime are
fed back to the WOPT and the CG phases in the
ORC compiler. Optimizations in the two phases
are performed with the feedback information,
and thus improved results of alias queries. The
performance improvement of the benchmark is
shown in Figure 5. After the user memory
management functions are recognized in gap and
parser, the performance improvement is 20.1%
and 12.3%, respectively.

The performance improvement is in
proportion to the improvement to alias queries to
a lower less a degree. The performance gain of
an optimization may depend on many other
analyses and the characteristic of the code.
Therefore, the improvements of alias queries
may not always contribute to overall
performance. Half of the benchmarks achieved
more than 10% of improvement in performance
with finer granularity.

6. Conclusions

We conduct a comprehensive study on the
naming schemes and the granularity of the
pointer analysis. We implement a set of
instrumentation and profiling tools to study
issues related to pointer analysis. Each
benchmark is instrumented with our tool to
collect target sets information at runtime. Such
target sets information is fed back into the ORC
compiler automatically to help later analyses and
optimizations. This approach provides a direct
way to study the impact of naming schemes and
granularity on performance.

0.0%

50.0%

100.0%

bzip2 crafty gap mcf parser twolf vpr

G=0

G=0f

G=h

G=hf

Figure 4: Percentage of no-alias queries changed with field granularity

 9

0 . 0 0 %

5 . 0 0 %

1 0 . 0 0 %

1 5 . 0 0 %

2 0 . 0 0 %

bz
ip2

cr
af

ty
ga

p
gz

ip
m

cf

pa
rs

er
tw

olf

vo
rte

x
vp

r

G = 0

G = 0 f

G = 1

G = 2

G = h f

Figure 5: Performance improvement for different granularity levels

Our experiment results suggest that pointer
analysis for heap memory blocks may yield a
good return. The commonly used naming
scheme that names memory objects with the
statement line number of the malloc() function
call improves only slightly over the approach
that treats heap memory blocks as one entity.
However, naming such dynamic allocated
memory objects with respective calli ng path
contributes more. Some programs have their own
dynamic memory allocation and management
routines. It is important for the compiler to
recognize such routines to enable more effective
naming schemes.

By simulating naming schemes with calli ng
path and field information, the point-to
information provided to the ORC compiler
greatly improves the results of alias queries. The
improved results from alias queries in turn
significantly increase the effectiveness of
compiler optimizations. Since the point-to
information fed back to the compiler is collected
at runtime, this approach may not be used
directly to generate real code. However, it
provides a useful guideline to the potential of
pointer analyses at finer granularity.

References

[1] David R. Chase, Mark Wegman, and F. Kenneth
Zadeck. Analysis of pointers and structures. In
Proceedings of SIGPLAN’90 Conference on
Programming Language Design and
Implementation, page 296-310, June 1990.

[2] W. Landi and B.G. Ryder. A safe approximate
algorithm for interprocedural pointer aliasing. In
proceedings of the SIGPLAN’92 Conference on
Programming Language Design and
Implementation, page 235-248, July 1992.

[3] X. Tang, R. Ghiya, L. J. Hendren, and G.R. Gao.
Heap analysis and optimizations for threaded
programs. In Proc. Of the 1997 Conf. On Parallel

Architectures and Compilation Techniques, Nov.
1997

[4] Choi, M. Burke, and P. Carini. Eff icient flow-
sensitive interprocedural computation of pointer-
induced aliases and sife-effects. In Proceedings
of the ACM 20th Symposium on Principles of
Programming Languages, pages 232-245,
January 1993.

[5] Maryam Emami, Rakesh Ghiya, and Laurie J.
Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function
pointers. In Proceedings of the ACM SIGPLAN
’94 Conference on Programming Language
Design and Implementation, pages 242-256, June
1994.

 [6] Nevin Heintze and Olivier Tardieu. Demand-
Driven Pointer Analysis. ACM SIGPLAN
Conference on Programming Language Design
and Implementation 2001.

 [7] Robert P. Wilson and Monica S. Lam. Eff icient
context-sensitive pointer analysis for C
programs. In Proceedings of the ACM
SIGPLAN’95 Conference on Programming
Language Design and Implementation, pages 1-
12, June 1995.

[8] Bjarne Steensgaard. Points-to analysis in almost
linear time. In Conference Record of the 23rd
ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, Pages 32-
41, January, 1996.

[9] Bixia Zheng. Integrating scalar analyses and
optimizations in a parallelizing and optimizing
compiler. PhD thesis, February 2000.

[10] Ben-Chung Cheng. Compile-time memory
disambiguation for C programs. PhD. Thesis,
2000.

[11] Michael Hind and Anthony Pioli. Evaluating the
effectiveness of Pointer Alias Analysis. Science
of Computer Programming, 39(1):31-35, January
2001

[12] Rakesh Ghiya, Daniel Lavery and David Sehr.
On the Importance of Points-To Analysis and
Other Memory Disambiguation methods For C
programs. In Proceedings of the ACM

 10

SIGPLAN’01 Conference on Programming
Language Design and Implementation, page 47-
58, June 2001.

[13] Markus Mock, Manuvir Das, Craig Chambers,
and Susan J. Eggers. Dynamic Points-to Sets: A
Comparison with Static Analyses and Potential
Applications in Program Understanding and
Optimzation. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis 14for Software
tools and Engineering, June 2001.

[14] Roy Ju, Sun Chan, and Chengyong Wu. Open
Research Compiler for the Itanium Family.
Tutorial at the 34th Annual International
Symposium on Microarchitecture.

[15] N. D. Jones and S. S. Muchnick,. A Flexible
Approach to Interprocedural Flow Analysis and
Programs with Recursive Data Structures. ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1982.

[16] S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step
towards practical analyses. In Proceedings of the
4th Symposium on the Foundations of Software
Engineering, October 1996.

[17] Tong Chen, Jin Lin, Wei-Chung Hsu and Pen-
Chung Yew, On the Impact of Naming Methods
for Heap-Oriented Pointers in C Programs,
International Symposium on Parallel
Architectures, Algorithms, and
Networks, 2002.

[18] Spec CPU2000,
http://www.specbench.org/osg/cpu2000/.

[19] G. R. Gao, J. N. Amaral, J. Dehnert, and R.
Towle. The SGI Pro64 compiler infrastructure: A
tutorial. Tutorial presented at the International
Conference on Parallel Architecture and
Compilation Techniques, October 2000.

[20] Fred Chow, Raymond Lo, Shin-Ming Liu, Sun
Chan, and Mark Streich, Effective
Representation of Aliases and Indirect Memory
Operations in SSA Form, Proc. of 6th Int' l Conf.
on Compiler Construction, pp. 253-257, April
1996.

[21] Shapiro, M., and Horwitz, S., The effects of the
precision of pointer analysis. Static Analysis 4th
International Symposium, SAS ' 97, Lecture

Notes in Computer Science Vol 1302, September
1997.

[22] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo,
and P. Tu. Anew algorithm for partial
redundancy elimination based on SSA form. In
Proc. of SIGPLAN 97 Conference on
Programming Language Design and
Implementation, page 273-286, May 1997.

[23] Michael E. Wolf, Dror E. Maydan, and Ding-Kai
Chen, Combining Loop Transformations
Considering Caches and Scheduling, Int' l J. of
Parallel Programming 26(4), page 479-503,
August 1998.

[24] Amer Diwan, Kathryn S. McKinley, J. Eliot and
B. Moss, Type-Based Alias Analysis, SIGPLAN
Conference on Programming Language Design
and Implementation, pages 106--117, June
1998

[25] Yong SH, Horwitz S, Reps T. Pointer Analysis
for Programs with Structures and Casting.
SIGPLAN Conference on Programming
Language Design and Implementation, vol 34,
pages 91-103, 1999-

[26] Erik Ruf. Context-Insensitive Alias Analysis
Reconsidered. In ACM SIGPLAN ' 95
Conference on Programming Language Design
and Implementation (PLDI' 95), La Jolla,
Cali fornia, vol 30, pages 13-22, June 1995.

[27] D. Choi, M. G. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer induced aliases and side effects. In
Conference Record of the Twentieth Annual
ACM Symposium on Principles of Programming
Languages, pages 232--245, January 1993.

[28] Barbara G. Ryder, Willi am A. Landi, Philip A.
Stocks, Sean Zhang, and Rita Altucher, A
Scheme for Interprocedural Modification Side-
Effect Analysis with Pointer Aliasing, ACM
Transactions on Programming Languages and
Systems (TOPLAS), 23(2), March 2001, pages
105--186.

[29] Michael Hind and Anthony Pioli , An Empirical
Comparison of Interprocedural Pointer Alias
Analyses. IBM Report #21058, December 1997.

