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Abstract

Pointer andysis plays a critical role in modern
C compilers because of the frequent appearances of
pointer expressons. It is even more important for
data dependence analysis, which is esential in
exploiting paallelism, because complex data
structures such as arrays are often accessd through
pointers in C. One of the important aspeds of
pointer analysis methods is their granuarity, the way
in which the memory objeds are named for andysis.
The naming schemes used in a pdnter andysis affed
its effediveness, espedally for pointers pointing to
heap memory blocks. In this paper, we present a new
approach that appies the compiler andysis and
profiling techniques together to study the impact of
the granularity in pointer andyses. An
instrumentation tool, based on the Intel’s Open
Resource Compiler (ORC), is devised to simulate
different naming schemes and colled predse target
sets for indired references at runtime. The olleded
target sets are then fed back to the ORC compiler to
ewvaluate the dfediveness of different grandarity in
pointer andyses. The change of the alias queries in
the compil er andyses andthe change of performance
of the output code at different grandarity levds are
observed. With the experiments on the SPEC
CPU2000integer benchmarks, we foundthat 1) finer
grandarity of pointer analysis sow great potential
in optimizations, and may bring abou up to 15%
performance improvement, 2) the cmnon naming
scheme, which gves heap memory blocks names
according to the line number of system memory
allocation calls, is not powerful enough for some
benchmarks. The wrapper functions for all ocation or
the user-defined memory management functions have
to be remgrized to produce better pointer andysis
result, 3) pointer analysis of fine granularity requires
inter-procedural analysis, and 4 it is also qute
important that a naming scheme distingush the fields
of a structure in the targets.

1. Introduction

The pervasive use of pointer expressions in C
programs has created a serious problem for the C

compilers.  Without proper pointer analyses,
compilers would not have accurate knowledge of
what memory objects may have been accessed by
indirect references. Consequently, many other
important analyses, such as data dependence analysis
on arrays and complex data structures, may suffer
from the conservative assumptions about the targets
of pointers. Hence, pointer analysis plays a critical
role in C compilers in exploiting parallelism [12]. It
provides the analysis base for other analysis and
parallelizing techniques.

Many pointer analysis methods have been
proposed ([1, 2, 3]). Among al the pointer analyses,
the points-to analysis[2, 4, 5, 6, 7, 8, 9, 10, 15] isthe
most widely used. A pointsto analysis aims to
produce a set of potential targets for each indirect
reference so that the alias relationship among pointers
can be determined by comparing their target sets.
Efforts have been put in searching for a good points-
to analysis[11, 12, 13, 21].

The effectiveness of a pointer analysis is
generally determined by two factors: the algorithm
used, and the granularity of the points-to targets
specified in the compiler. For example, the
algorithms used by compilers may have different
flow-sensitivity or context sensitivity. The algorithm
may also be applied inter-procedurally or only intra-
procedurally.

To calculate the target sets, the address space of
memory objects in a program should first be assigned
names. The grandarity of the names represents the
precision of the naming schemes used in pointer
analysis. Different naming schemes may lead to
different granularity in pointer analyses. In general,
there are two types of memory objects: the local or
global variables defined in the program, and heap
memory blocks alocated at runtime. The pointers
that point to global or local variables are called stack-
oriented pointers; and the pointers that point to
memory blocks are called heap-oriented pointers [5].
For heap-oriented pointers, their target objects are
anonymous. Compilers have to assign them names
internally before the target sets could be calculated.
For example, if the compiler assigns the entire heap
space with only one name, the entire heap space will



be viewed as only ore large memory objed. All of
the pointers point to dfferent memory locdions in
the heg space will have the same target in their
target sets, and they will all be diases. On the other
hand, for stadk-oriented pointers, globa and locd
variables usually have explicitly given variable
names in the program, and with well-defined types.
However, if the cmpiler treds an entire data
structure with many fields as a single memory objed,
all of the pointers point to the different fields of the
data structure will be diases.

The granularity of the target objeds and its
related naming schemes not only affed the results of
a pointer anaysis, but also the dficiency of its
algorithm. Finer granularity will alow better
digtinction among dfferent memory obeds, and
hence, fewer aliases. However, it may lead to a larger
name space ad possbly larger target set sizes, and
hence, longer time and more storage requirement for
apoaints-to analysis.

Various naming schemes have been propaosed in
the past [10, 16, 24, 27, 28]. For anonymous heap
memory objects, the placewhere they are allocaed is
used to name them. For memory objeds of structure
type, the field names may be used in their names.
Some eperiments have been dore [25, 29] and
showed the importance of proper naming methods.
However a comprehensive study on the impad of the
granularity on pdnter analysis has not been dore.
Most of the previous gudies focus primarily on the
algorithms. One reason is that it is not trivial to
implement different naming schemes in conjunction
with various pointer analysis algorithms. Ancther
resson is that the hegp memory objeds have nat
receved enough attention in the past. In most
compilers, only very simple naming schemes are
used for hegp memory blocks. However, a recent
study shows that the number of heg-oriented
pointers is quite significant in most SFEC CPU2000
programs [17]. Hence, it is important to look at the
impad of naming schemes and the granularity onthe
pointer analysis and the optimizations that use the
results of the pointer analysis.

In this paper, we study this problem using a new
approach that combines the profili ng techniques and
the mpiler anaysiss. We developed an
instrumentation and profiling tod set based on the
Intel’s Open Reseach Compiler (ORC) [14].
Different naming schemes are simulated and the
predse target sets of indired references (eg.
pointers) are mlleded at runtime for the points-to
analysis. We then feed the results of the points-to
analysis badk to the ORC compiler. The
improvement on the results of dias queries in other
compiler analysis and optimizations and the
performance of the cde thus generated are dso
measured. Our experiments are onducted on SFEC

CPU2000 integer benchmarks and on Intel Itanium

computers.

The suggested approach does not have to
implement pointer analyses with different granularity
in a compiler. It is much easier to simulate these
analyses with a runtime tool. The pointsto set
colleded by this toad is an upper bound result and
reveds the potential of different granularity. Using
the optimizations in the ORC compiler as consumers
makes the measurement of effediveness meaningful.
However, we have to admit that some import isaues,
such as the impaad of the dgorithm, are not covered
in this paper.

The main contributions of this paper include:

e A comprehensive study onthe naming schemes
and the granularity of the pointer analysis. We
found that the widely used simple haming schemes
are inadequate. Wrapper functions and self-
management functions that contain system
memory allocaion functions (such as malloc())
need to be caefully analyzed. It is also important
for a pointer analysis to consider the fields of a
data structure.

A set of instrumentation and profiling toadls to
study isaues related to pdnter analysis. We
develop atodl that is capable of cdculating predse
target sets for ead pdnter reference Thistool set
is independent of the pointer analysis used in a
compiler.

e The impad of the pointer analysis on compiler
optimizaions. We feed the target sets colleded at
runtime bad into the ORC compiler to help later
analyses and optimizdions, and measure the
performance improvement on Itanium. It provides
a very dired way to study the impad of naming
schemes and granularity on performance

The rest of the paper is organized as follows:
The badkground knowledge of pointsto analysis is
introduced in the next sedion. Sedion 3 and sedion
4 describe, in detail, how the instrumentation and
profili ng tool works, and hav the runtime results are
fed bad to the ORC compiler to evaluate different
naming schemes and ganularity levels. The
experiment results are presented in sedion 5 The
conclusions are presented in sedion 6

2. Background

In a points-to analysis, memory objeds, such as
variables and hegp memory blocks, neel their names
so the compiler can identify them as the targets of
pointers. A naming scheme sets up a mapping from
the memory address @ace to the symbadlic name
space These naming schemes differ in the way
memory oljeds are grouped together, and the names
asdgned to them. As a result, the naming schemes



implicitly determine the granularity of memory
objects used within the compiler.

Global variables have explicit and fixed
variable names in a program. Therefore, using the
variable names sets up a precise one-to-one mapping
between their corresponding memory locations and
their names. The local variables within a procedure
also have explicit variable names. But there may be
many instances of a local variable at runtime if the
procedure is called recursively. A name for a local
variable may represent many instances of the variable
in different procedure instances. However, such
many-to-one mapping is usually thought as a quite
precise.

Heap memory objects have no explicit hames
assigned to them in the program. The number of
memory blocks allocated at runtime by the malloc()
function is unknown at compile time. The compiler
has to group those heap memory blocks and assigns
them a name to facilitate points-to analysis.

These anonymous memory objects created by all
of the malloc() functions in the program could be
assigned the same name[26]. If that is the case, all
references accessing to any memory block allocated
by the malloc() are aliases. This obvioudly is not very
desirable. Hence, the compiler often assigns names to
memory blocks according to the line number of the
statement which contains malloc() function in the
program. This allows memory blocks allocated at
different call sites of the malloc() function to have
different names, and hence, be treated as different
points-to targets. This is significantly better than the
previous naming scheme. However, if the malloc()
function is called within the procedure X, and the
procedure X is called severa times at different call
sites. All of the memory blocks alocated at different
call sites of procedure X will have the same name.

To avoid such a problem, the compiler can aso
assign a name according to the calling path at the
invocation site of the malloc() function in addition to
the line number [10]. For example, if procedure X
calls procedure Y which in turn calls procedure Z,
and a malloc() is called within procedure Z. The
memory blocks alocated by the malloc() can be
assigned a name according to its calling path X-Y-Z
in addition to its line number. To control the
complexity of such a naming scheme, the compiler
can use only the last n procedures of a caling path in
its naming scheme. In the last example, if n=2, Y-Z
will be used. Different n will thus give different
levels of granularity to the named memory objects.

When a memory object is a structure type with
many fields, the granularity of the memory object can
be made even finer by considering each of itsfield as
a different memory object. As a result, two pointers
that point to different fields of a memory object of
the structure type can be distinguished. However,
since C is not a strong-typed language, type casting

has to be monitored carefully when fields are
considered. Notice that the naming of the
dynamically allocated memory blocks and separating
the fields of the structure-type memory objects are
orthogonal, i.e. they can be used independently in
determining the granularity of memory objects.

In the following discussion, the granularity
level, G, of a naming scheme will be represented by
these two considerations. For example, G=n means
that the last n procedures in the calling path are used,
but fields are not considered. When n=0, it is the
degenerate case of assigning the entire heap space
with only one name; when n=1, only the line number
is used. G=nf means the fields are also considered in
addition to the calling path.

3. Target sets in different naming
schemes

3.1. Overview

We developed an instrumentation and profiling
tool to simulate different naming schemes and collect
their target sets of indirect references. Our approach
takes advantage of the fact that the addresses of
memory objects and references are al available at
runtime.

The selected naming scheme is simulated by
setting up a mapping at runtime from the addresses of
memory objects to their names according to the
naming scheme. Targets of a pointer are identified by
looking up the mapping with the addresses of the
references to their names. The target sets thus
obtained represent approximately the best results that
these naming schemes and pointer analyses can be
expected to achieve.

To facilitate the lookup process, shadows are
used to record the address-name mapping. There are
three contiguous data segments in a program: the
global variable segment, the heap memory segment
and the local variables segment. A library routine for
system memory allocation is provided to assure that
the heap space is allocated in a compact space so as
to keep the shadow space for heap compact. A
corresponding shadow entry in the shadow segment
is assigned to each of the memory blocks allocated.
The sizes of the shadow segments can be
dynamically adjusted to be large enough to hold the
address-name mapping for al of the memory blocks
allocated at runtime. The name of a memory object is
stored in its shadow entry in the shadow segment
with the same offset as that in the data segment (see
Figure 1). As a result, the offset can be used in the
lookup process to quickly locate the shadow entry
that stores the name. Such a shadow data structure
makes its modification very easy - just overwrite the



old vaue axd no delete operation is needed.
However, this method daibles the size of memory
required by aprogram.

address / name
| \1

name mapping in shadow sg

offset

;

program data space

Figure 1: The shadow for naming schemes

There ae severa advantages using this
approach. First, this tod provides a uniform platform
to study the granularity of the points-to analysis. The
effediveness of different granularity levels can be
compared using this framework. It is much easier to
develop such a profiling tool than to implement
different naming schemes and padnter analyses in a
red compiler. Secondy, the predse target sets for
eat naming scheme can be mlleded at runtime.
These results are roughly the best any compiler
implementation can be expected to achieve. Hence,
the obtained results do not depend onthe quality of
the implementation of these naming schemes and
points-to analyses in a red compiler. This is a very
significant advantage espedally because the results
of an inter-procedural points-to analysis are heavily
dependent on how it is implemented. The third
advantage is that the results of our measurements can
be fed back to the ORC compiler, and we @n study
their adual impad on the other analyses and the
optimization phases that are the dients of the points-
to analysis. The fourth advantage is that we can study
the potential performance improvement on a red
machine, i.e. Itanium, not on asimulator.

However, such a profiling method also hes its
limitations. Since our results are mlleded duing
runtime, they could be input dependent and the
coverage of the program limits our studies only to the
parts that are adually exeauted at runtime. With the
measurements from a suite of benchmarks and the
focus of the study is not on a particular program, we
believe that the results of our study can refled the
general charaderistics of red applicdions.

Our profiling tod has two major comporents. an
instrumentation tool developed on the Intel's ORC
compiler [14], and a set of library routines written in
C. Applicaion pograms are first instrumented by the
modified ORC compiler to insert cdls to the library
routines. Then at runtime, these library routines

simulate different naming schemes and colled the
target sets of indired references.

3.2. Instrumentation

The instrumentation tod in the ORC compil er
inserts function cdl s to invoke our library routines to
generate and processtraces. They simulate diff erent
naming schemes for every memory obed, and
cdculate target sets for every indired reference We
describe some of the detail sin the foll owings:

» Procedure cdls. At every entrance and exit of a
procedure cdl in the program, a library cdl is
inserted with the cdl site ID of the procedure
pas=d as one of the parameters. The cdl siteID is
pushed into or popped out of the cdling peth stack
to maintain the aurrent cdli ng path.

O Memory objects. When a memory object becomes
dive, a library cal is inserted with the starting
address, the length, and the name (for variables
only) of the memory object passed as its
parameters. The name of the variables helps us to
identify which variable is actually referenced
when the runtime results are fed back to the
compiler. The way a name is assigned to a heap
memory block is determined by the selected
naming scheme. This library call sets up the
mapping from the addresses of this memory object
to its name by writing the name in the
corresponding shadow entry. The number of
entries to be written is determined by the size of
this memory object. Global variables, local
variables and heap memory blocks are
instrumented differently:

00 Global variables become alive at the beginning of
a program. The mapping of global variables is
initialized only once when the program starts.
Scope may be an issue for global variables. Global
variables are visible only in the filesin which they
are declared. The initialization procedure for
global variables is instrumented in each file as a
new procedure at the end of the file, and these
procedures are invoked at the beginning of the
main function. The starting address of a global
variable can be accessed by the address-of
operation. The length is determined by the type.

* Local variables become dive each time the
procedures in which they reside are called. The
address for alocal variable may not remain the
same for each invocation of the procedure.
Therefore, we have to insert library function
calls at the beginning of each procedure to set
up the addressname mapping for loca
variables. Variables can be ignored if their
addresses are not taken. The starting address of
alocal variable can be accessed by the address-
of operation.



* Heg memory blocks become dive when they
are dlocated through cdls to system memory
dlocdion functions, such as malloc() and
calloc(). Library function cdls are insert after
these functions. The starting address is the
return value of the memory allocaion function,
and the size of the memory blocks can be
obtained from the parameters of these memory
alocdion functions.

e Indiread references. Each indired memory
reference is instrumented with its address and the
reference ID pased as parameters to the library
function cdl in order to colled its target set at
runtime.

» Typecat. The instrumentation d type cat is
neeaded only when we want to identify the type of
a memory objed. The instrumentation tool also
generates a file to describe the layout of eech
structure type. Therefore, the hegp memory blocks
for data structures with fields can be diced into
smaller objects acordingto their fields.

3.3. Assign Names

Global and locd variables aready have their
given names. Hence, thereis no reed to assgn rames
to them. For heg memory blocks, we simulate
naming schemes by using different lengths of the
cdling peth. The calling peth stadk is maintained by
instrumented library functions. When a hegp memory
block is allocaed, the top n elements in the cdling
path stad are checked, if G=n.

When the fields are mnsidered, the field ID
asciated with the name asigned to the memory
objead is written into the shadow. The
instrumentation tool generates a file to describe the
layout of ead structure type to help bresk down
memory objedsto their fields.

For example, there is a memory objed, and its
name determined by the cdling path is g_name. The
memory objed’s darting addressis addr_start and its
size is object_size. If this memory objed is of
structure type or array of structure type, the kth field
of this memory oljed will be adgned the name
(g_name, k). Asaume the offset and the size of this
field are offset and field size, and the size of the
structure is struct_size. To set up the mapping, all
address addr, in this memory olbjed will be given
name (g name, k), when the following two
condtions hold.

1. addr_start < addr < addr_start+objed_size
2. offset < (addr-starting) mod struct_size < offset+
field_size.

When references accessing different fields of this
memory, the targets can be distinguished because
they have different field IDs.

3.4. Collect target sets

The target of each instance of reference is
collected by looking up the shadow with the address
value of the reference. The target set of areferenceis
accumulated according to the reference ID and stored
in ahash table.

The target sets computed by the tool are flow
sensitive and path sensitive. Only the targets that can
reach areference at runtime are put into its target set.
The previous value of a pointer is overwritten after
the pointer is re-assigned. The possible targets in
not-taken branches are also ignored.

If we want to make the target sets context
insensitive, targets coming from different calling
contexts are not distinguished and are stored together.
We can also make the target sets context sensitive by
attaching each target a tag to indicate its call site.
However, our evaluation method requires calling
context insensitive results, because it is not directly
supported in the ORC compiler to generate multiple
versions for different calling contexts.

4. Evaluate naming schemes

The effectiveness of naming schemes is
evaluated by feeding the target sets collected at
runtime back to the ORC compiler, and observing the
changes in the alias queries and in the performance of
the generated code. The optimizations in the ORC
compiler are used as typical clients of the points-to
analysis.

4.1. The ORC compiler

The Open Research Compiler, or the ORC
compiler [14], originated from the Pro64 compiler
[19] developed by the Silicon Graphic Inc. The ORC
compiler is for C, C++ and Fortran90. It has most of
the analyses and optimizations available in modern
compilers. It performs pointer analyses, scalar
optimizations, loop transformations, inter-procedural
analyses, and code generation. Profiling and
feedback-directed optimizations are also supported
by this compiler.

There are three stages of analysis for each
procedure: loop-nest optimizations (LNO), scalar
global optimizations (WOPT), and code generation
optimizations (CG). The LNO stage does loop related
optimizations [23], such as pardlelization, and
unimodular transformations. The WOPT stage
contains some general optimizations, such as partial
redundancy elimination [22], copy propagation and
strength reduction. The CG stage focuses on
generating optimized binary code. The inter-
procedural anaysis is supported by the IPA
component.



The pointer analysis in the ORC compiler starts
from aflow-freepointer analysis, which is smilar to
Steengaad's algorithm [8]. This pointer anaysis is
dore inter-procedurally when the inter-procedural
analysis is turned on A flow-sensitive painter
analysisisthen applied intra-procedurally to get more
predse results. Some simple rules, such as the
addresstaken rule, are used to help alias analysis.
The dias information stored in the interna
representations is maintained acossdiff erent stages.

When using the ORC compiler as a base for
comparison, we try to tune the wmpiler so that the
best results could be brough abou by the change of
the naming scheme. The optimization level is always
set at O3. The inter-procedure analysisis turned off,
becaise the arrent version o the ORC compiler has
unstable inter-procedural analysis which may fail in
some benchmarks. Therefore the result of ORC
compiler just represents the capability of a pradica
compiler, not a state-of-art compiler. However, the
moderate pointer anaysis in the ORC compiler
adualy makes the changes in granularity clea If the
ORC had very powerful pointer analysis, it is unclea
where the pointer analysisis overdone.

4.2. Feedback

The target sets of indired references are fed badk
to the ORC compil er. The target sets may be diff erent
when dfferent naming schemes are used, and thus
the results of the optimizations in the cmpiler may
be different. Two things are meaured: the
performance of the generated code on Itanium, and
the results of alias queries within the optimization
phases.

The danges in the performance on Itanium
diredaly reflea the impaa of different naming
schemes in the ORC compiler. However, the
performance danges are determined by many
fadors. In this gudy, we dso measure the changesin
the result of alias queries in the optimization phases,
which somewhat reflea the subtle dhanges in the
pointer analysis.

The major optimizaions are dore in the WOPT
and CG stages. In order to feed badck to dfferent
stages, the instrumentation is done & different stages
so that the feedback information can match. The
instrumentation is also done incrementally because
the impaad of the feedback to WOPT shoud be
considered when the instrumentation at CG is dore.
The target sets collected at runtime by the profili ng
tool are fed badk to the two stages, repladng the dias
analysis result produced by the ORC compiler. In the
WOPT stage, the static single assgnment (SSA) form
[20] is generated based on the target sets fed badk
from the runtime. Many optimizations in WOPT,
such as partial redundant elimination and cead code

elimination, are built upon the SSA form. In the CG
stage, the results of aias queries are dso replacal by
the target sets fed back from the runtime. We
instrument the ORC compiler to record the changes
in alias queries.

The profiling information is limited to the
portions in a program that is reahed duing the
exeaution. There is no dias information for the
references that are not reached at runtime. These
references are conservatively asaimed to be aliased
with all other references.

5. Experiment Results

Experiments are nducted on the SFEC
CPU2000integer benchmarks. First, the distribution
of the results of aias queriesin the ORC compiler is
reported. Then eatd benchmark is instrumented, and
target information for ead indired references at
different granularity levels are colleded at runtime.
The benchmarks are compiled again with the
colleded dliasinformation. Due to the improved alias
information, some dias queries which used to return
may alias now return no aias. The changes of alias
gueries are reported again to show the impad of
pointer analysis with dfferent granularities. Finally,
the mmpiled benchmarks are exeauted again to
measure theimpad on executiontime.

5.1. Aliasqueries

As in typicd compilers, an alias query in the
ORC compiler returns one of the following three
results: not alias, same locaion, and may alias. The
first two ceses are acarate results, while the third
one , may dlias, is conservative and could be
improved by more predse pointer analyses. Since a
pointer expresson references either a variable or a
heg memory block, the dias pairs that return may
alias can be further clasdfied into: three céegories:
between two variables (v-v), between a variable and
a hegp memory objed (v-h), and between two heg
memory blocks (h-h). Figure 2 shows the
distribution d the returned values from the original
ORC compiler. On average, the queries which return
may alias acourts for 54.4% of al queries. Thishigh
percentage indicaes that there ould be grea
potential for improvements. As hown in Figure 2,
the majority of the may aias queries are related to
hegp memory blocks. Although there ae frequent v-h
(variable to hegp oljeds) type queries returning may
alias, many o them shoud be turned into noalias by
a stronger inter-procedural pointer analysis. For the
rest of aliases among heap blocks, the following
experiments are conducted to study the impad of
granularity levels on pointer analyses.
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G =0: al heg memory blocks are given orne hame.

G=1, 2, 3: the cdling path of length 1, 3 or 3 isused to name the hegp memory blocks.
G=a the whadle cdli ng path is used to name the hegp memory blocks.
G=m: the user memory management function is recognized to name the heap memory blocks.

Figure 3: Percentage of no-alias queries changed with granularity

5.2. Query enhanced by feedback

After program instrumentation and runtime
colledion d target sets information, the benchmarks
are ompiled with the ORC compiler again. This
time, the ORC compiler is provided with target

There ae several observations based on

Figure 3.

» There ae more than 30% improvements even
when G is 0. The reason is that the ORC
compil er uses a default symbol to represent all
memory objeds outside of a procedure to
simplify inter-procedural  analysis. Such
granularity is too coarse. A normal inter-
procedural pointsto analysis can do much
better. .

» For most of the benchmarks, except for bzip2
and mcf, hegp memory anaysis with line
number (G=1) does not improve much.
However, for twolf and vpr, G=2 geadly
reduces the number of may dlias. Further
increase of the cdling path for heg pointer
analysis (G=3) makeslittl e diff erence.

information for pointer expressons colleded from
instrumented runs. Now the ORC compiler is able to
give more acarate answers to alias queries. Some
gueries that used to return may alias now may return
no dias. The percentage of the changesis reported in
Figure 3. The queries invoving unreaded
references are excluded.

e G=a does nat bring further improvements.
Therefore, there ae little incentives to
consider very long cdling peth. Some simple
analyses, for example, suggested in Intel’s
compiler group [12], are sufficient.

5.3. User managed memory

In the benchmark gap and parser, the pointer
analysis is insensitive to the naming scheme for
heg memory objeds. The ressonisthat the hegp
memory space is managed by programmers.
Therefore, the cdling path of system memory
alocdion dees nat help. If the functions in
which the user manages the hegp memory can be
recgnized, our tool can tred them like mall oc().
For example, after we explicitly recognize user
managed memory all ocaion functions, the query
improvement improved drasticdly from 30.8 %



to 82.2% in gap, and from 29.9% to 68.4% in
parser. See G=min Figure 3.

Although the user managed memory
alocation functions are very difficult, if not
impossible, for compiler to recognize them. The
major difficulty is to trace the size of memory
space accessed through each pointer so that the
no overlap can be proved. For programs with
user managed memory alocation functions,
speculation or dynamic optimization may be
needed.

5.4. Fieldsof heap memory blocks

The fields can affect the pointer analysis in
two ways: 1) the pointer analysis can distinguish
the pointsto sets of different fields that are
defined as pointer type; and 2) the pointer
analysis can distinguish the targets pointing to
different fields of a structure. In our approach,
the target sets collected at runtime have the same
effects as considering fields in pointsto set.
Whether to consider fields in target sets is
another potential variation.

Itiseasy to divide a structured variable into
finer granularity using their type definition.
However, there is no data type defined for heap
memory blocks. They can be divided into finer
granularity using their fields of structure type
only when the memory blocks with the same
name are cast to and used as the same type. The
type casting of heap memory blocks are traced to
identify conditions in which this analysis is
applicable. The naming scheme could be based
on G=1 or G=2, or G=m such that the heap
memory blocks in the same group have the same
type. We represented such granularity as G=hf.

The change of queries when fields are
considered is reported in Figure 4. By comparing
the result of G=0 and G=0f, and comparing the
result of G=h and G=hf, it can be observed that it
is important for pointer analysis to consider the
fields of both variables and heap memory blocks.

5.5. Performance enhanced by profiling

Pointer analyses at finer granularity might
significantly improve the results of alias queries.
It is also interesting to know what would be the
impact on the actual optimizations. In this
section, the target sets collected at runtime are
fed back to the WOPT and the CG phases in the
ORC compiler. Optimizations in the two phases
are performed with the feedback information,
and thus improved results of aias queries. The
performance improvement of the benchmark is
shown in Figure 5. After the user memory
management functions are recognized in gap and
parser, the performance improvement is 20.1%
and 12.3%, respectively.

The performance improvement is in
proportion to the improvement to alias queries to
a lower less a degree. The performance gain of
an optimization may depend on many other
analyses and the characteristic of the code.
Therefore, the improvements of alias queries
may not aways contribute to overal
performance. Half of the benchmarks achieved
more than 10% of improvement in performance
with finer granularity.

6. Conclusions

We conduct a comprehensive study on the
naming schemes and the granularity of the
pointer anaysis. We implement a set of
instrumentation and profiling tools to study
issues related to pointer analyss. Each
benchmark is instrumented with our tool to
collect target sets information at runtime. Such
target sets information is fed back into the ORC
compiler automatically to help later analyses and
optimizations. This approach provides a direct
way to study the impact of naming schemes and
granularity on performance.
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Figure 4: Percentage of no-alias queries changed with field granularity
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Figure5: Performanceimprovement for different granularity levels

Our experiment results suggest that pointer
analysis for heap memory blocks may yield a
good return. The ommonly used naming
scheme that names memory objeds with the
statement line number of the malloc() function
cdl improves only dightly over the gproach
that treas hegp memory blocks as one entity.
However, naming such dynamic dlocated
memory objeds with respedive cdling peth
contributes more. Some programs have their own
dynamic memory alocaion and management
routines. It is important for the cmpiler to
recmgnize such routines to enable more effedive
naming schemes.

By simulating naming schemes with cdling
path and field information, the point-to
information povided to the ORC compiler
gredly improves the results of alias queries. The
improved results from alias queries in turn
significantly incresse the effediveness of
compiler optimizaions. Since the poaint-to
information fed badk to the compiler is colleded
at runtime, this approach may not be used
diredly to generate red code. However, it
provides a useful guideline to the potential of
pointer analyses at finer granularity.

References

[1] David R. Chase, Mark Wegman, and F. Kenneth
Zaded. Anaysis of pointers and structures. In
Procealings of SIGPLAN'90 Conference on
Programming Language Design and

Implementation, page 296-310, June 1990.

W. Landi and B.G. Ryder. A safe gproximate
algorithm for interprocedural pointer diasing. In
proceelings of the SIGPLAN’92 Conference on
Programming Language Design and
Implementation, page 235-248, July 1992.

X. Tang, R. Ghiya, L. J. Hendren, and G.R. Gao.

Heg analysis and opimizaions for threaded
programs. In Proc. Of the 1997 Conf. On Pardl el

(2]

(3]

Architecures and Compil ation Techniques, Nov.
1997

Choi, M. Burke, and P. Carini. Efficient flow-
sensitive interprocedural computation o pointer-
induced diases and sife-effeds. In Procealings
of the ACM 20" Sympasium on Principles of
Programming Languages, pages 232-245,
January 1993.

Maryam Emami, Rakesh Ghiya, and Laurie J.
Hendren.  Context-sensitive  interprocedural
points-to analysis in the presence of function
pointers. In Procealings of the ACM SIGPLAN
'94 Conference on Programming Language
Design and Implementation, pages 242-256, June
1994,

Nevin Heintze and Olivier Tardieu. Demand-
Driven Pointer Analyss. ACM SIGPLAN
Conference on Programming Language Design
and Implementation 2001.

Robert P. Wilson and Monica S. Lam. Efficient
context-sensitive  pointer analysis for C
programs. In Procealings of the ACM
SIGPLAN’95 Conference on Programming
Language Design and Implementation, pages 1-
12, June 1995.

Bjarne Steensgaad. Points-to analysis in almost
linear time. In Conference Reard o the 23"
ACM  SIGPLAN-SIGACT symposium on
Principles of Programming Languages, Pages 32-
41, January, 1996.

Bixia Zheng. Integrating scdar anayses and
optimizations in a paralelizing and opimizing
compil er. PhD thesis, February 2000.

Ben-Chung Cheng. Compile-time memory
disambiguation for C programs. PhD. Thesis,
2000.

[11] Michad Hind and Anthony Pioli. Evaluating the
effediveness of Pointer Alias Analysis. Science
of Computer Programming, 39(1):31-35, January
2001

[12] Rakesh Ghiya, Daniel Lavery and David Sehr.
On the Importance of Points-To Analysis and

Other Memory Disambiguation methods For C
programs. In Procealings of the ACM

(4]

(5]

(6]

(8]

(9]

(10



SIGPLAN’01 Conference on Programming
Language Design and Implementation, page 47-
58, June 2001.

Markus Mock, Manuvir Das, Craig Chambers,
and Susan J. Eggers. Dynamic Points-to Sets: A
Comparison with Static Analyses and Potential
Applications in Program Understanding and
Optimzaion.  ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis 14for Software
tools and Engineeaing, June 2001.

(13]

[14] Roy Ju, Sun Chan, and Chengyong Wu. Open
Reseach Compiler for the Itanium Family.
Tutorial a the 34th Annua International

Symposium on Microarchitedure.

N. D. Jones and S. S. Muchnick,. A Flexible
Approac to Interprocedura Flow Analysis and
Programs with Reaursive Data Structures. ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1982.

[16] S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step
towards practical analyses. In Proceedings of the
4th Symposium on the Foundations of Software
Engineeing, October 1996.

[17] Tong Chen, Jin Lin, Wei-Chung Hsu and Pen-
Chung Yew, On the Impad of Naming Methods
for Heg-Oriented Pointers in C Programs,

(15]

International Symposium on Parallel
Architectures, Algorithms, and
Networks, 2002.

[18] Spec CPU2000,

http://www.spedench.org/osg/cpu2000/.

[19 G. R. Gao, J. N. Amard, J. Dehnert, and R.
Towle. The SGI Pro64 compiler infrastructure: A
tutorial. Tutorial presented at the International
Conference on Parallel Architedure ad
Compil ation Tedniques, October 2000.

Fred Chow, Raymond Lo, Shin-Ming Liu, Sun

Chan, and Mark Streich, Effedive
Representation o Aliases and Indired Memory

Operationsin SSA Form, Proc. of 6th Int' | Conf.
on Compiler Construction, pp. 253-257, April

1996.

Shapiro, M., and Horwitz, S., The dfeds of the
predsion d pointer analysis. Static Analysis 4th
International  Symposium, SAS ' 97, Ledure

(20]

[21]

1C

Notes in Computer Science Vol 1302, September
1997.

[22] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo,
and P. Tu. Anew agorithm for partial
redundancy elimination based on SSA form. In
Proc. of SIGPLAN 97 Conference on
Programming Language Design and
Implementation, page 273-286, May 1997.

[23] Michad E. Wolf, Dror E. Maydan, and Ding-Kai
Chen, Combining Loop Transformations
Considering Cadies and Scheduling, Int' | J. of
Paradlel Programming 26(4), page 479-503,
August 1998.

[24] Amer Diwan, Kathryn S. McKinley, J. Eliot and
B. Moss Type-Based Alias Analysis, SIGPLAN
Conference on Programming Language Design
and Implementation, pages 106--117, June
1998

Yong SH, Horwitz S, Reps T. Pointer Analysis
for Programs with Structures and Casting.
SIGPLAN  Conference on  Programming
Languege Design and Implementation, vol 34,
pages 91-103, 1999

[26] Erik Ruf. Context-Insensitive Alias Analysis
Rewmnsidered. In  ACM  SIGPLAN ' 95
Conference on Programming Language Design
and Implementation (PLDI' 95), La Jolla,
California, vol 30, pages 13-22, June 1995.

D. Choi, M. G. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer induced diases and side dfeds. In
Conference Record o the Twentieth Annual
ACM Symposium on Principles of Programming
Languages, pages 232--245, January 1993.

Barbara G. Ryder, William A. Landi, Philip A.
Stocks, Sean Zhang, and Rita Altucher, A
Scheme for Interprocedural Modificaion Side-
Effed Analysis with Pointer Aliasing, ACM
Transadions on Programming Langueges and
Systems (TOPLAYS), 23(2), March 2001, pages
105--186.

Michad Hind and Anthony Pioli, An Empiricd
Comparison o Interprocedural Pointer Alias
Analyses. IBM Report #21058, December 1997.

[25]

[27]

(28]

[29]



