
On the Impact of Naming Methods for Heap-Oriented Pointers in C 
Programs  

Tong Chen, Jin Lin, Wei-Chung Hsu and Pen-Chung Yew 
Department of Computer Science 

University of Minnesota 
{tchen, jin, hsu, yew}@cs.umn.edu 

 
 

Abstract 
 

 Many applications written in C allocate memory 
blocks for their major data structures from the heap 
space at runtime. The analysis of heap-oriented 
pointers in such programs is critical for compilers to 
generate high performance code. However, most 
previous research on pointer analysis mostly focuses 
on pointers pointing to global or local variables. In 
this paper, we study points-to analysis of heap-
oriented pointers using profiling information. An 
instrumentation tool and a set of library routines are 
developed to measure points-to sets of memory 
references at runtime. Different naming methods for 
heap-oriented pointers are studied. We found that it is 
very important to adopt appropriate naming methods 
to recognize wrapper functions for memory allocation 
and memory management functions defined by users. 
Based on these naming methods, the approaches in 
pointer analysis, such as flow sensitivity and context 
sensitivity, are examined with the runtime tool. The 
program characteristics are observed at runtime to 
evaluate what kind of compiler analysis is needed. 
Experiments are conducted on SPEC CPU2000 
integer benchmarks. We found that flow sensitivity 
and context sensitivity have little impact on the 
analysis of heap-oriented pointers.  

1. Introduction 

Pointers are used in many applications written in C. 
These pointers could pose a problem to compilers 
because it is often unclear what locations may actually 
be accessed by pointer-based indirect memory 
references at runtime. Due to the lack of knowledge of 
the targets for these memory references, compilers 
may have to make conservative assumptions, and 
consequently, prohibit many useful optimizations, 
resulting in less efficient code  

The pointer analysis aims to inform the compilers 
whether memory references access the same memory 
blocks or not. One approach, the points-to analysis [1, 
2, 3], tries to identify all of the targets of each memory 
reference so that it can be determined whether two 
references are aliased or not by comparing their target 
sets. The result of points-to analysis can also be used 

                                                           
. The work was supported in part by the U. S. National Science 

Foundation under Grants EIA-9971666 and MIP-9610379 and a 
grant from the Intel Corporation 

in other analyses, such as data dependence test [12] 
and shape analysis [4, 15]. 

A pointer may point to global or local variables, 
called a stack-oriented pointer; or memory blocks 
allocated from the heap space at runtime, called a 
heap-oriented pointer; or to both [5].  The use of heap 
memory gives programs flexibility to adapt their 
memory usage according to the size of the problems. 
Therefore, many programs allocate their major data 
structures from the heap space. Figure 1 reports the 
distribution of memory references, read or write, in 
some of the SPEC CPU2000 integer benchmarks. The 
references through heap-oriented pointers take up a 
large portion, in both static count at compile time 
(Figure 1.a) and dynamic count at runtime (Figure 
1.b). The analysis of heap-oriented pointers is thus 
critical to these applications. 

a. Distribution of static count

0%
20%
40%
60%
80%

100%

bz
ip2

cr
af

ty
ga

p
gz

ip
m

cf

pa
rs

er
tw

olf

vo
rte

x
vp

r

I-VH

I-H

I-V

D-V

 b. Distribution of dynamic count

0%
20%
40%
60%
80%

100%

bz
ip2

cr
af

ty
ga

p
gz

ip
m

cf

pa
rs

er
tw

olf

vo
rte

x
vp

r

I-H

I-V

D-V

D-V: direct references accessing variables. 
I-V: indirect references accessing variables. 
I-H: indirect references accessing heap blocks. 
I-VH: indirect references accessing both variables and heap 
blocks.  
Memory references caused by register spill are not included 
because they are irrelevant to a pointer analysis. 

Figure 1. Distribution of memory references 

 
Researchers have been trying to find efficient and 

yet effective heuristic algorithms for pointer analysis 
[7, 8, 9, 10, 11] because a precise pointer analysis is 

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



 2 

an NP- hard problem [6]. The effectiveness of a 
pointer analysis depends on the characteristics of 
pointers in real applications.  

Most of the previous studies focused mainly on 
stack-oriented pointers. The pointer analysis of heap-
oriented pointers should start with a naming process 
that gives names to anonymous heap memory blocks 
so that they can be expressed as points-to targets in 
pointer analysis. Such a naming method implicitly 
determines the granularity of the named objects. For 
instance, the compiler can give the same name to all 
of the memory blocks allocated in all of the instances 
of the same malloc statement, or it can give a different 
name to each memory block allocated in each instance 
of the same malloc statement. The granularity of the 
named objects, and the number of names associated 
with the allocated heap space can be quite different.  
Consequently, the results of the analysis on heap-
oriented pointers, such as the size of points-to sets and 
the percentage of points-to sets with only one target, 
may vary significantly with different naming methods.  
The characteristics of heap-oriented pointers under 
different naming methods require a more careful 
study.  

Instead of implementing and comparing different 
pointer analysis methods directly in a compiler, we 
developed an instrumentation and profiling tool based 
on the Intel’s ORC compiler [14]. Different naming 
methods and the precise points-to sets based on each 
naming method are collected at runtime.  Alias pairs 
can then be identified by their points-to sets, and we 
can use them to evaluate the upper bound potential of 
each naming method. We also examine the 
characteristics of heap-oriented pointers, such as the 
size of their points-to sets, and the effect of flow 
sensitivity and context sensitivity. Our experiments 
are conducted on SPEC CPU2000 integer 
benchmarks.  

Our approach has several advantages. First, it is 
much easier to develop such a profiling tool than to 
implement different naming methods and pointer 
analyses in a real compiler. We can quickly study the 
characteristics of applications and evaluate the 
effectiveness of different naming schemes and pointer 
analyses before we actually implement them. 
Secondly, the precise points-to sets for each naming 
method can be collected at runtime and used as a 
measure to evaluate the effectiveness of the pointer 
analysis. Since these results are collected at runtime, 
they can be regarded as approximated upper bounds 
that these naming methods and pointer analyses can 
be expected to achieve. The third advantage of our 
approach is that the results thus obtained are 
independent of a particular compiler and the 
idiosyncrasy of how its naming methods and pointer 
analysis are implemented. This could be a distinct 
advantage, because the effectiveness of inter-
procedural pointer analysis depends heavily on how 
they are implemented. 

However, such a profiling method also has its 
limitations. Since our results are collected during 

runtime, they could be input dependent. They do not 
cover the entire program, but rather only the parts that 
are actually executed. Hence, these results may not 
reflect the exact characteristics of a particular program 
when it is actually analyzed by a real compiler. 
Nevertheless, the main focus of our study is to 
compare the effectiveness of different naming 
methods and pointer analyses on the entire benchmark 
suite, not on each individual program. We believe that 
these limitations will not significantly affect the 
results of our study. However, a more detailed study 
using only compile time analysis will definitely be 
needed.  
The main contributions of our study include: 
• An instrumentation and profiling methodology to 

study heap-oriented pointers.  This tool is capable 
of calculating precise points-to sets for each 
memory reference, including both stack-oriented 
and heap-oriented memory references. It does not 
require a compiler to conduct pointer analysis in 
advance [13]. 

• A comprehensive study on different naming 
methods for heap-oriented pointers. We found that 
the widely used simple naming method is 
inadequate. Wrapper functions and self-
management functions that contain system memory 
allocation functions need to be carefully analyzed.  

• Based on a proper naming method, we found that 
flow-insensitive points-to analysis is quite effective 
for heap-oriented pointers. Flow sensitive analysis 
only adds marginal improvement. 

• Based on a proper naming method, we found that 
some procedures have different side effects at 
different call sites. However, their alias patterns in 
each procedure remain mostly the same in different 
calling contexts. This shows that schemes, such as 
partial transfer function [7], may be quite effective. 

The rest of the paper is organized as follows: we 
describe our approach and our methodology in the 
next section. Section 3 reports the experiment results. 
Finally the conclusions can be found in section 4.  

2. Approach 

In this section, we start with an introduction of 
the related background knowledge. Later, the tool to 
collect points-to sets at runtime and the methods to 
evaluate different naming methods are discussed in 
detail.  

2.1 Background 

The requirement of a naming method is the main 
difference between the analysis of the stack-oriented 
pointers and that of the heap-oriented pointers. Since 
all variables have explicit names in a program, a target 
of a stack-oriented pointer can be represented by its 
given variable name. However, no explicit names are 
given to dynamically allocated memory blocks from 
the heap space in the program. The compiler needs to 

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



 3 

assign names to those dynamically allocated memory 
blocks to facilitate its later analyses and optimizations. 

Typical system functions that dynamically 
allocate memory blocks from heap space at runtime 
include: malloc, calloc, and allocate. For our 
convenience, the mallac will be used to refer to all the 
memory allocation functions in the later discussions. 
We did not include the function realloc because even 
though realloc may allocate a new memory block to 
change the size of an existing heap block, the new 
block can always inherit the name of the old one. 
There is no need to give it a new name.  

There are several possible naming methods for 
dynamically allocated memory blocks in the heap 
space. In this paper, we classify them by what is used 
in the naming methods as follows: 
• One name. Assign only one name to the entire heap 

space. Namely, all of the dynamically allocated 
memory blocks will belong to the same named 
object. The consequence of such a naming scheme 
is that all of the heap-oriented pointers are all 
aliased together. Since the result of this method is 
obvious, we will not measure it in our paper. 

•  Line numbers. A memory block dynamically 
allocated in a statement, for instance, by a malloc 
function, is named by the line number of the 
statement. This is the most common naming 
scheme used in existing compilers. This naming 
scheme will allow different memory blocks 
dynamically allocated in different statements to 
have different names. This is a significant 
improvement over using only one name. However, 
it still cannot differentiate memory blocks 
dynamically allocated in the same statement, but 
from different call sites of that procedure. This will 
make all of the dynamically allocated memory 
blocks from different call sites to become aliased. 

• Calling paths. To improve the precision in naming 
heap objects, we can name dynamically allocated 
heap memory blocks by their calling paths in 
addition to its statement line number. The calling 
path is a sequence of call sites from the main 
function to this malloc call. We can also limit the 
length of each calling path to a fixed number L. 
When a calling path is partially used, we usually 
select the call sites backwardly, instead of the call 
sites starting from the main function. For example, 
if procedure A is called by procedure B which is in 
turn called by procedure C, and a malloc function 
in procedure A is in statement at line number 100. 
If we set L=2, the dynamically allocated heap 
memory blocks will be named "B-A-100", and with 
L=3, it will be named "C-B-A-100". Using this 
convention, the calling path length of the previous 
method is L=1.  To an extreme, a naming method 
can use the entire calling path no matter how long 
the path is. We call this naming method L=a, where 
“ a”  means “ all”  parts of a calling path. We will 
show the effect of different calling path lengths in 
the next section. 

•  Memory blocks. We found some of the malloc 
functions are actually called within loops. Using 
calling paths, all of the dynamically allocated heap 
memory blocks within a loop will be assigned the 
same name and cannot be differentiated. To further 
differentiate them, we give each memory block 
allocated in loops a unique name. This is obviously 
beyond what a compiler can do statically at 
compile time, and we will use this method only as 
the upper bound for all of the other naming 
methods. We use L=u, "u" for "unique", to 
represent this method. 

2.2 The profiling tool  

Our profiling tool includes two major 
components: an instrumentation tool developed based 
on the Intel's ORC compiler [14], and a set of library 
routines written in C. An application program is 
instrumented by the modified ORC compiler. 
Corresponding library routine calls are inserted at 
every entrance and exit of a procedure, every 
invocation of system memory allocation function 
(such as malloc), and every indirect memory 
reference. These instrumented library routine calls 
will maintain the current calling path, assign names to 
dynamically allocated memory blocks according to 
the specified naming method and then calculate the 
points-to set of each memory expression at runtime. 
We could then analyze all alias pairs based on their 
points-to sets. The application programs we studied 
include a subset of SPEC CPU2000 integer 
benchmark programs1. 

The advantage of our proposed scheme is that the 
address value of an indirect memory reference is 
known at runtime. We only need to associate its 
address value with its corresponding name. To 
facilitate efficient lookup of the address value with its 
assigned name, we associate a shadow location with 
each memory location. The shadow location keeps the 
name of the memory object associated with the 
memory location. For global and local variables (i.e. 
stack-oriented variables), the shadow location stores 
its symbol table ID. For an indirect memory reference, 
it will store the name assigned according to the 
specified naming method. A separate hash table is set 
up to keep track of the points-to targets associated 
with each indirect memory reference.  The table is 
then post-processed to determine the pair-wise aliases.  
Two indirect memory references are aliased if there 
exist at least one common target in their points-to sets. 

2.3 Evaluate naming methods 

After the target sets are computed, each naming 
method is evaluated by the percentage of aliased 
reference pairs in all pairs of memory references. A 

                                                           
1 Since there are two input data sets for vpr to cover different parts 

of this program, vpr is split into vpr1 and vpr2 according to the 
input data. 

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



 4 

memory reference is not included if it cannot be 
reached at runtime.  

This measure is used because the size of a points-
to set [11] is no longer appropriate for heap-oriented 
pointers. The size of a points-to set depends heavily 
on the naming method and not necessarily reflects the 
effectiveness of a pointer analysis. For example, when 
only one name is given to all heap blocks, the size of 
points-to set is one. Although the size of points-to sets 
is low, this is obviously not an effective pointer 
analysis. 

To count alias pairs, we compare the references 
within a procedure because most optimizations that 
are the consumers of the results from a pointer alias 
analysis are applied only in the scope of a procedure. 
This measurement reflects the impact of pointer 
analysis on the generated code. 

Reference pairs, instead of variable pairs, are 
chosen for measurements because reference pairs can 
be flow-sensitive.  

3. Experiment results 

Several measurements have been conducted to 
study the characteristics of heap-oriented pointers. 
First, we study the impact of naming methods on 
heap-oriented pointers. Then, the impact of flow 
sensitivity and context sensitivity in pointer analysis is 
evaluated based on the proper naming methods.  

3.1 Impact of naming methods 

For the different naming methods discussed in the 
previous section, the references in each procedure are 
checked pair-wise and the percentages of alias pairs in 
each program are reported in Figure 2. Only memory 
references that access heap memory blocks at runtime 
are considered. On average, 57.1% of static indirect 
memory references in the benchmarks are reached at 
runtime.  

0%

20%

40%

60%

80%

100%

bz
ip2

cr
af

ty
ga

p
gz

ip

pa
rs

er m
cf

tw
olf

vo
rte

x
vp

r1
vp

r2

L=1

L=2

L=a

L=u

 

Figure 2. Percentage of alias pairs with 
different naming methods  

From figure 2, we observed: 
• In half of the benchmarks, naming heap blocks 

with only the line number, namely L=1, is not 
enough. The number of alias pairs can be greatly 
reduced when more precise naming methods are 
used. 

• For programs, such as twolf, vpr and vortex, heap 
memory allocation functions are wrapped in utility 
functions of these programs. Therefore L=2 is quite 
sufficient to recognize these wrapper functions.  

• L>2 does not show much further improvement in 
these benchmarks.  

• Some benchmarks, such as parser and gap get no 
help from traditional pointer analysis. These 
programs allocate a large chunk of memory block 
once, and then manage this memory block by 
themselves.  
The number of distinct names used is shown in 

Table 1. These data could explain, to some extent, 
why the percentage of alias pairs changes with respect 
to the naming methods, and also indicate possible 
overhead associated with the naming methods. For 
L=1, it is the number of system memory allocation 
functions actually reached at runtime. For L=2 and 
L=a, they are the numbers of names generated 
according to the calling contexts.  The size of name 
space is an indication of how precise the naming could 
be. The number of alias pairs may be reduced when 
the size of name space is increased.  This is why 
benchmarks of bzip2, crafty and parser show no 
improvement over different naming methods: the size 
of their name space remains the same. The size of 
name space is also an indication of the cost for points-
to analysis. More names used, more time and space 
will be needed in points-to analysis. 

Table 1. Average size of the name space 

 

0 %

2 0%

4 0%

6 0%

8 0%

1 00 %

bz
ip2

cr
af

ty
gz

ip
m

cf

pa
rs

er
tw

olf

vo
rte

x
vp

r1
vp

r2

L = 1

L = 2

L = a

 

 Figure 3. Percentage of single target 
references 

Table 2 shows the average size of points-to sets, 
and Figure 3 shows the percentage of singleton 
(points-to set with only on target). The average size of 
points-to sets of heap-oriented pointers is very close to 
1 in all of the naming methods, execept for vortex 
with L=a. The percentage of singletons is high for 
L=1 and L=2. These data indicate that naming heap 

L=1 L=2 L=a
bzip2 8 8 8
crafty 6 6 6
gzip 3 3 3
parser 1 1 1
mcf 3 3 3
twolf 2 142 170
vortex 4 6 2891
vpr1 2 84 166
vpr2 2 40 52

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



 5 

memory blocks with a limited length of calling paths 
do not introduce much overhead. However, some 
pragram may have very large points-to sets,  if we use 
the complete calling path. Since the naming method of 
L=2 is the best considering both the effectiveness and 
efficiency for these benchmarks, it is used in the 
following flow sensitivity and context senstivity 
study. 

 

Table 2. Average size  of points-to sets 

L=1 L=2 L=a
bzip2 1.00 1.00 1.00
crafty 1.40 1.40 1.40
gzip 1.00 1.30 1.30
m cf 1.01 1.01 1.01
parser 1.00 1.00 1.00
twolf 1.01 1.24 1.34
v ortex 1.04 1.05 15.97
v pr1 1.02 1.02 1.55
v pr2 1.00 1.03 1.17  

 

3.2 Flow sensitivity  

One of the key cost factors in pointer analysis is 
its flow sensitivity. A flow sensitive pointer analysis 
propagates the value of pointers on the control flow 
graph, while a flow insensitive pointer analysis does 
not consider the control flow. It takes more time for 
flow sensitive analysis, but the result may be more 
accurate. 

The source of inaccuracy in flow insensitive 
analysis is that pointers may be assigned different 
names. There is no kill and all the definitions will be 
propagated to each read point, though some of the 
definitions may be unreachable when control flow is 
taken into account. 

To observe the impact of flow sensitivity on 
heap-oriented pointers, we instrument each 
assignment statements to record which location is 
written to and what value is written to.  All of the 
values assigned to a location are then propagated to all 
indirect reference expressions to simulate flow 
insensitive analysis. 

Table 3. Comparison of flow sensitive and 
flow insensitive 

 Flow senstivie analysis flow insensitive analysis 

 size of points-to 
set 

size of points-to 
set 

 average  max 

alias 

(%) 
average max 

alias 

(%) 

twolf 1.24 5 76.2 1.53 9 76.2 

vpr1 1.02 2 82.0 1.04 2 83.6 

vpr2 1.03 2 89.4 1.04 2 89.8 

 
 Table 3 compares the average size, maximum 

size of points-to sets, and percentage of alias pairs in a 
flow sensitive and a flow insensitive analysis. The 
programs that have small name space are excluded 
because the results for those programs are not very 

interesting. Though the points-to set is increased in 
some benchmarks, the percentage of alias pairs does 
not change. This result shows the flow insensitive 
analysis can be effective for these benchmarks.  

3.3 Context Sensitivity 

A context-sensitive pointer analysis analyzes a 
procedure for each of its calling contexts because 
different calling contexts may lead to different alias 
patterns. The context-sensitive pointer analysis is 
usually very expensive.  

In this measurement, we study how programs 
behave under different contexts. First, we study 
whether the side effect of a procedure will change in 
different calling contexts or not. Second, we study 
whether the alias patterns will change in different 
calling contexts.  

The method used in context sensitivity study is an 
extension of the method used in calculating points-to 
set under different naming methods. The points-to sets 
calculated previously are context insensitive. The 
points-to targets coming from different calling 
contexts are recorded together. Now we will 
distinguish the points-to targets from different calling 
contexts. As discussed in the previous section, our 
tool maintains a calling path from the main function to 
current function at runtime. To find out the impact of 
context sensitivity, each points-to target is attached 
with its calling path ID.  The read/write set and the 
alias pairs of a procedure for each calling path are 
then computed. In a context sensitive analysis, two 
references are aliased only when they have the same 
target with the same calling path ID.  

Table 4. Changes caused by context sensitive 
pointer analysis 

 side effect of 
procedures 

alias pairs  alias pairs that 
are reached  

bzip2 0.0% 0.7% 0.0% 
crafty 13.7% 0.0% 0.0% 
twolf 2.6% 0.4% 0.0% 
vortex 7.4% 17.3% 0.0% 
vpr1 10.2% 5.1% 0.0% 
vpr2 4.1% 0.2% 0.0% 

 
Table 4 reports the changes of analysis results 

when points-to are calculated in a calling context 
sensitive way. The first data column reports the 
percentage of procedures that have different side 
effects in different calling contexts. The side effect of 
a procedure is measured by the set of memory objects 
that are read and the set of memory objects that are 
written in the procedure. The second column shows 
the percentage of alias pairs reduced when alias pairs 
are checked with their calling path IDs. An alias pair 
may becomes non-alias due to the change of the 
control flow in different calling contexts. Some 
branch paths are not executed and the references in 
those branch paths have no targets. This kind of 
change is related to the control flow, and has less 

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



 6 

impact on a pointer analysis. What we care about is 
the spurious alias pairs in which either reference is 
reached at runtime. Only these pairs may be 
eliminated by a context sensitive analysis. An 
example of such spurious alias pairs is illustrated in 
Figure 4. The percentage of procedures that have 
spurious alias pairs is reported in the last column.  

 
 
foo (int *p, int *q) { 
 *p = *q+k; 
} 
 
call sites: 
 foo(&a, &b); 
 foo(&b, &a); 
The pair of *p and *q is aliased in a context insensitive 

analysis because they both point to a and b. However, this 
pair is not aliased in a context sensitive analysis. 

 

Figure 4. An example of context sensitivity 

The data in Table 4 shows that some procedures 
have different side effects for heap memory references 
and different alias pairs at different call sites. 
However, the change of alias pairs is only caused by 
the change of the control flow and the alias patterns of 
procedures remain almost the same. This result 
indicates that flow insensitive pointer analysis may be 
powerful enough to most programs. However, context 
sensitive analysis may be important for the side effect 
analysis.  

4. Conclusions 

This paper presented a new approach to study the 
pointer analysis for heap-oriented pointers. A tool is 
developed to study different naming methods for 
heap-oriented pointers, and precise points-to sets are 
collected at runtime. With the help of this tool, we 
found that simple naming methods used in many 
existing compilers may be insufficient, and more 
sophisticated naming methods are needed. 

Based on an effective naming method, the flow 
sensitivity and context sensitivity of pointer analysis 
for heap-oriented pointers are studied. A flow 
insensitive analysis for such pointers is found to be 
powerful enough. We also found that the side effects 
of procedures do change with calling contexts while 
alias patterns of procedures are context insensitive. 
 
References 
[1] J. Choi, M. Burke, and P. arini. Efficient flow-sensitive 

interprocedural computation of pointer-induced aliases 
and sife-effects. In Proceedings of the ACM 20th 
Symposium on Principles of Programming Languages, 
pages 232-245, January 1993. 

[2] W. Landi and B.G. Ryder. A safe approximate 
algorithm for interprocedural pointer aliasing. In 

proceedings of the SIGPLAN’92 Conference on 
Programming Language Design and Implementation, 
page 235-248, July 1992. 

[3] Maryam Emami, Rakesh Ghiya, and Laurie J. 
Hendren. Context-sensitive interprocedural points-to 
analysis in the presence of function pointers. In 
Proceedings of the ACM SIGPLAN ’94 Conference on 
Programming Language Design and Implementation, 
pages 242-256, June 1994. 

[4] X. Tang, R. Ghiya, L. J. Hendren, and G.R. Gao. Heap 
analysis and optimizations for threaded programs. In 
Proc. Of the 1997 Conf. On Parallel Architectures and 
Compilation Techniques,  Nov. 1997 

[5] Nevin Heintze and Olivier Tardieu. Demand-Driven 
Pointer Analysis. ACM SIGPLAN Conference on 
Programming Language Design and Implementation 
2001. 

[6] W. Landi. Undecidability of static analysis. ACM 
Letters on Programing Languages and Systems, 
1(4):323-337, Dec, 1992. 

[7] Robert P. Wilson and Monica S. Lam. Efficient 
context-sensitive pointer analysis for C programs. In 
Proceedings of the ACM SIGPLAN’95 Conference on 
Programming Language Design and Implementation, 
pages 1-12, June 1995. 

[8] Bjarne Steensgaard. Points-to analysis in almost linear 
time. In Conference Record of the 23rd ACM 
SIGPLAN-SIGACT symposium on Principles of 
Programming Languages, Pages 32-41, January, 1996.  

[9] Michael Hind and Anthony Pioli. Evaluating the 
effectiveness of Pointer Alias Analysis. Science of 
Computer Programming, 39(1):31-35, January 2001 

[10] Bixia Zheng. Integrating scalar analyses and 
optimizations in a parallelizing and optimizing 
compiler. PhD thesis, February 2000.  

[11] Ben-Chung Cheng. Compile-time memory 
disambiguation for C programs. PhD. Thesis, 2000. 

[12] Rakesh Ghiya, Daniel Lavery and David Sehr. On the 
Importance of Points-To Analysis and Other Memory 
Disambiguation methods For C programs. In 
Proceedings of the ACM SIGPLAN’01 Conference on 
Programming Language Design and Implementation, 
page 47-58, June 2001.   

[13] Markus Mock, Manuvir Das, Acraig Chambers, and 
Susan J. Eggers. Dynamic Points-to Sets: A 
Comparison with Static Analyses and Potential 
Applications in Program Understanding and 
Optimzation. ACM SIGPLAN-SIGSOFT Workshop 
on Program Analysis 14for Software tools and 
Engineering, June 2001. 

[14] Roy Ju, Sun Chan, and Chengyong Wu. Open 
Resource Compiler for the Itanium Family. Tutorial at  
the 34th Annual International Symposium on   
Microarchitecture.  

[15] M. Sagiv, T. Reps and R. Wilhelm. Solving Shape-
Analysis Problems in Languages with Destructive 
Updating. ACM Transactions on Programming 
Languages and Systems, 20(1):1-50, January 1998.

 

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


